Abstract:
There is provided a cassette having: a flexible accommodating body that accommodates an accumulative fluorescent sheet in a light shielded state; an entrance/exit portion that is provided at one end portion of the flexible accommodating body, and through which the accumulative fluorescent sheet can be inserted and removed into and from the flexible accommodating body due to mounting to a radiographic image reading device; and opening/closing means for opening the flexible accommodating body such that a push-out member, that pushes the accumulative fluorescent sheet out toward the entrance/exit portion, can be inserted, or closing the flexible accommodating body in a light shielded state.
Abstract:
A scanning optical system that can be made compact and can provide a sufficiently small beam diameter on a surface to be scanned is provided. In a scanning optical system including a galvanometer mirror that reflects and deflects a light beam emitted from a light source and a fθ lens that focuses the deflected light beam on a surface to be scanned, the fθ lens includes, in order from the galvanometer mirror side, a first lens which is a spherical lens having a positive refractive power, a second lens which is a spherical lens having a negative refractive power, and a third lens which is a spherical lens having a positive refractive power. The fθ lens satisfies conditional expression (1) below: 1.542≦f/f1≦7.828 (1), where f is a focal length of the entire fθ lens system, and f1 is a focal length of the first lens.
Abstract:
A scanning optical system includes: a galvanometer mirror that reflects and deflects a light beam emitted from a light source, and an fθ lens that focuses the deflected light beam on a scanning target surface. The fθ lens is constituted by a first lens, which is a spherical lens having a positive refractive power, a second lens, which is a spherical lens having a negative refractive power, a third lens, which is a spherical lens having a negative refractive power, and a fourth lens, which is a spherical lens having a positive refractive power, provided in this order from the side of the galvanometer mirror. The scanning optical system satisfies Conditional Formula (1) below: 2.529≦f/f1≦8.437 (1) wherein f is the focal length of the entire fθ lens, and f1 is the focal length of the first lens.
Abstract:
A scanning optical system includes: a galvanometer mirror that reflects and deflects a light beam emitted from a light source, and an fθ lens that focuses the deflected light beam on a scanning target surface. The fθ lens is constituted by a first lens, which is a spherical lens having a positive power, a second lens, which is a spherical lens having a negative power, a third lens, which is a spherical lens, and a fourth lens, which is a spherical lens having a positive power, provided in this order from the side of the galvanometer mirror. The scanning optical system satisfies Conditional Formula (1) below: −7.300≦f/f3≦0.509 (1) wherein f is the focal length of the entire fθ lens, and f3 is the focal length of the third lens. Thereby, a compact scanning optical system capable of achieving a sufficiently small beam diameter on a scanning target surface is obtained.
Abstract:
A scanning optical system includes: a galvanometer mirror that reflects and deflects a light beam emitted from a light source, and an fθ lens that focuses the deflected light beam on a scanning target surface. The fθ lens is constituted by a first lens, which is a spherical lens having a positive power, a second lens, which is a spherical lens having a negative power, a third lens, which is a spherical lens having a negative power, a fourth lens, which is a spherical lens having a positive power or a negative power, and a fifth lens, which is a spherical lens having a positive power, provided in this order from the side of the galvanometer mirror. The scanning optical system satisfies Conditional Formula (1) below: −4.654≦f/f4≦0.255 (1) wherein f is the focal length of the entire fθ lens, and f4 is the focal length of the fourth lens.
Abstract:
In an image pickup device and method using a lens unit in which a plurality of lens arrays, are arranged and a lens holding unit is provided between the lens arrays, light emitted from the area corresponding to the lens holding unit can be detected. A moving mechanism that moves a lens unit or the observation target holding unit and the detection unit, and a moving mechanism control unit are provided. The moving mechanism control unit controls the moving mechanism such that the lens unit or the observation target holding unit and the detection unit are moved to a second position from a first position. The second position is set to a position when the lens array after the movement is disposed at a position facing the detection surface of the detection unit shielded by a lens holding unit when the lens unit is disposed at the first position.
Abstract:
A radiographic image reading device includes a reading unit configured to photoelectrically read photostimulated luminescence light produced from a storage phosphor sheet illuminated with excitation light, the storage phosphor sheet, at which a radiographic image is stored, being scanned by a scanning unit using the excitation light; and a control unit configured to control the reading unit so as to cause the reading unit, in a case of reading at a first resolution, to read with excitation light at a first scanning speed and a first intensity and, in a case of reading at a second resolution that is a higher resolution than the first resolution, to read with excitation light at a second scanning speed that is slower than the first scanning speed and a second intensity that is smaller than the first intensity.
Abstract:
A radiographic image reading device includes: a casing that has a conveyance inlet/outlet for conveying in and conveying out a storage phosphor sheet on which a radiographic image is recorded, and a discharge outlet for discharging the storage phosphor sheet; an image reading unit that reads the radiographic image recorded on a storage phosphor sheet that has been conveyed in from the conveyance inlet/outlet; and a conveyance unit that conveys the storage phosphor sheet that has been conveyed in from the conveyance inlet/outlet to a read position at which reading is performed by the image reading unit and that conveys the storage phosphor sheet, from which the radiographic image has been read, to the conveyance inlet/outlet or the discharge outlet.
Abstract:
A radiographic image erasing device includes: a first light source that applies first erase light including a wavelength in the ultraviolet region to a storage phosphor sheet in which a radiographic image has been stored and recorded; a second light source that is placed at a height identical to that of the first light source and applies second erase light including a wavelength of a longer wavelength than that of the first erase light to the storage phosphor sheet to which the first erase light has been applied; drive mechanisms that switch the orientations or positions of the first light source and the second light source; and a controller that controls the drive mechanisms in accordance with a conveyance direction of the storage phosphor sheet such that the first erase light and the second erase light are applied in this order to the storage phosphor sheet.