Abstract:
Provided are a planographic printing plate precursor for on-press development, including: an aluminum support; an interlayer which contains a compound containing a support absorptive group and a hydrophilic group; and an image recording layer which contains an infrared absorbing agent, a polymerization initiator, a polymerizable compound, and polymer particles formed of a styrene copolymer, on the aluminum support, in which the aluminum support is an aluminum plate having an anodized film on a surface in contact with the interlayer and the anodized film has micropores extending in a depth direction from a surface in contact with the interlayer, and an average pore diameter of the micropores in the surface of the anodized film is in a range of 20 to 40 nm; a method of preparing a planographic printing plate and a planographic printing method obtained by using the planographic printing plate precursor for on-press development.
Abstract:
A positive-working lithographic printing plate precursor for infrared laser is provided that includes, layered sequentially above a support, a lower layer and an upper layer, the lower layer and/or the upper layer including an infrared absorbing agent, either the lower layer comprising an alkali-soluble group-containing graft copolymer or the upper layer comprising a sulfonamide group-, active imide group-, and/or amide group-containing graft copolymer, and the graft copolymer being a polyurethane resin having as a graft chain an ethylenically unsaturated monomer-derived constitutional unit. There is also provided a process for making a lithographic printing plate, the process including in sequence an exposure step of imagewise exposing by means of an infrared laser the positive-working lithographic printing plate precursor for infrared laser and a development step of developing using an aqueous alkali solution with a pH of 8.5 to 10.8.