WATER SPLITTING DEVICE
    1.
    发明申请

    公开(公告)号:US20200240028A1

    公开(公告)日:2020-07-30

    申请号:US16850725

    申请日:2020-04-16

    摘要: An object of the invention is to provide a water splitting device having a low electrolysis voltage and excellent gas separation performance. The water splitting device of the invention is a water splitting device that generates gases from the positive electrode and the negative electrode, the water splitting device including: a bath to be filled with an electrolytic aqueous solution; the positive electrode and the negative electrode disposed in the bath; and a polymer membrane that is ion-permeable and is disposed between the positive electrode and the negative electrode in order to separate the electrolytic aqueous solution filling the bath into the positive electrode side and the negative electrode side, wherein the positive electrode and the negative electrode are installed at a predetermined distance from the polymer membrane, and the moisture content of the polymer membrane is 40% or more.

    ARTIFICIAL PHOTOSYNTHESIS MODULE AND ARTIFICIAL PHOTOSYNTHESIS DEVICE

    公开(公告)号:US20190131470A1

    公开(公告)日:2019-05-02

    申请号:US16228398

    申请日:2018-12-20

    摘要: Provided are an artificial photosynthesis module and an artificial photosynthesis device that have excellent energy conversion efficiency. The artificial photosynthesis module includes a first electrode that decomposes a raw material fluid with light to obtain a first fluid; a second electrode that decomposes the raw material fluid with the light to obtain a second fluid; and a diaphragm disposed between the first electrode and the second electrode. The diaphragm is formed of a membrane having through-holes, is immersed in pure water having a temperature of 25° C. for one minute, and has a light transmittance of 60% or more in a wavelength range of 380 nm to 780 nm in a state where the diaphragm is immersed in the pure water. The average hole diameter of the through-holes of the diaphragm is more than 0.1 μm and less than 50 μm. An artificial photosynthesis device has the above-described artificial photosynthesis module.

    PHOTOCATALYST ELECTRODE, ARTIFICIAL PHOTOSYNTHESIS MODULE, AND ARTIFICIAL PHOTOSYNTHESIS DEVICE

    公开(公告)号:US20190112721A1

    公开(公告)日:2019-04-18

    申请号:US16212297

    申请日:2018-12-06

    摘要: Provided are a photocatalyst electrode, an artificial photosynthesis module, and an artificial photosynthesis device that have low electrical resistance, even in a case where the area is increased, in a case where a transparent conductive layer is used. The photocatalyst electrode is a photocatalyst electrode that has a substrate, a transparent conductive layer, a photocatalyst layer, and a linear metal electrical conductor, and splits water with light to produce a gas. The substrate, the transparent conductive layer, and the photocatalyst layer are laminated in this order, and the linear metal electrical conductor is in contact with the transparent conductive layer. The artificial photosynthesis module has the oxygen evolution electrode that splits the water with the light to produce oxygen, and a hydrogen evolution electrode that splits the water with the light to produce hydrogen. The oxygen evolution electrode and the hydrogen evolution electrode are disposed in series in a traveling direction of the light. At least one of the oxygen evolution electrode or the hydrogen evolution electrode has the configuration of the above-described photocatalyst electrode. The artificial photosynthesis device has the artificial photosynthesis module, and circulates and utilizes water.

    ARTIFICIAL PHOTOSYNTHESIS MODULE
    4.
    发明申请

    公开(公告)号:US20180258542A1

    公开(公告)日:2018-09-13

    申请号:US15976046

    申请日:2018-05-10

    摘要: In an artificial photosynthesis module, a plurality of first electrode portions of a hydrogen generation electrode are disposed side by side with a gap, and each of a plurality of second electrode portions of an oxygen generation electrode is disposed at a gap between the first electrode portions of the hydrogen generation electrode as seen from the hydrogen generation electrode side with respect to the diaphragm. A first photocatalyst layer of at least one first electrode portion of the hydrogen generation electrode or a second photocatalyst layer of at least one of the second electrode portions of the oxygen generation electrode is tilted with respect to a flow direction of an electrolytic aqueous solution, or a projecting part is provided on a surface of the first photocatalyst layer of at least one first electrode portion of the hydrogen generation electrode or a surface of the second photocatalyst layer of at least one second electrode portion of the oxygen generation electrode.