Abstract:
A colored optical fiber including a glass optical fiber; a primary coating layer that covers the glass optical fiber; a secondary coating layer that covers the primary coating layer; and a colored layer that coats the secondary coating layer. The relaxation modulus after 24 hours at 60° C. of of the layers coated is 140 MPa or less.
Abstract:
An optical fiber ribbon according to the present invention includes a collective coating layer containing an ultraviolet curable resin containing amorphous PPG and an amorphous monomer, the collective coating layer formed around coated optical fibers. The collective coating layer has an equilibrium elastic modulus of 12 MPa to 20 MPa, both inclusive, and a yield point elongation of 5% to 9%, both inclusive, and the adhesion between the collective coating layer and the outermost layers of the coated optical fibers is 12 N/cm to 15 N/cm, both inclusive.
Abstract:
The present invention provides a colored optical fiber that shows anti-microbend property and hot-water resistance, an optical fiber ribbon that utilizes the same, and an optical fiber cable.It is a colored optical fiber 1, which comprises two coating layers of a primary coating layer 31 and a secondary coating layer 32, wherein either one of the primary coating layer 31 or the secondary coating layer 32 is colored, both coating layers have equilibrium elastic moduli of 60 MPa or less, and the secondary coating layer 32 has a relaxation modulus of 410 MPa or more, an optical fiber ribbon 4 that utilizes it, and an optical fiber cable 8.
Abstract:
The purpose of the present invention is to provide, by a configuration or method different from conventional art, a coated optical fiber enabling reduced interface delamination between a glass fiber and a primary coating layer when the coated optical fiber is immersed in water, and a reduction of transmission loss increase. A coated optical fiber according to one embodiment of the present invention is provided with a glass fiber, a primary coating layer coated on the glass fiber, a secondary coating layer coated on the primary coating layer, and a colored layer coated on the secondary coating layer. The coated optical fiber is configured so that small water bubbles are generated substantially evenly within the primary coating layer when the coated optical fiber is immersed for 200 days in warm water of 60° C.
Abstract:
The present invention provides an optical fiber in which transmission loss is not easily increased when the optical fiber is dipped in water and then dried and also which has a solvent resistant property and a micro-bend resistant property. An optical fiber according to one embodiment of the present invention is an optical fiber in which at least two layers of coating resin coat the circumference of a glass optical fiber. When a Yang's modulus of the first coating layer of the coating resin is defined by PY (MPa) and an elution rate of the coating resin after dipping in 60° C. hot water for 168 hours is defined by E (mass·%), a formula of 1.8≦E≦8.61×PY+1.40 is satisfied.
Abstract:
{Problems}The present invention is contemplated for providing a thermoplastic resin foam and a light reflecting material having a high reflectivity when being made thin, as well as a method of producing the thermoplastic resin foam.{Means to Solve}A thermoplastic resin foam, prepared by using a thermoplastic resin composition containing a melt-type crystallization nucleating agent (B) in a crystalline thermoplastic resin (A), which foam comprises a bubble having a mean bubble diameter of less than 1 μm in the inside thereof.