Abstract:
A multicore fiber includes: a plurality of first glass regions each including: a core portion; and a first cladding portion having a lower refractive index than a maximum refractive index of the core portion; and a cladding region formed on outer peripheries of the plurality of first glass regions, wherein compressive stress is applied to the plurality of first glass regions.
Abstract:
A bare optical fiber manufacturing method includes applying an ultraviolet curable resin applied around an optical fiber; and irradiating the ultraviolet curable resin with ultraviolet light emitted from semiconductor ultraviolet light emitting elements, by use of an ultraviolet irradiation device having plural ultraviolet irradiation units each having plural positions where the ultraviolet light is emitted toward the ultraviolet curable resin, the plural positions being arranged on the same circle, the plural ultraviolet irradiation units being arranged in a traveling direction of the optical fiber such that the optical fiber passes centers of the circles, at least two of the plural ultraviolet irradiation units being differently arranged with respect to circumferential direction angles thereof around an axis that is the traveling direction of the optical fiber.
Abstract:
A method of producing an optical fiber, containing: (a) a resin application step of applying an ultraviolet curable resin, onto an outer circumference of an optical fiber; (b) a heating step of heating the ultraviolet curable resin; and (c) a light irradiation step of irradiating the ultraviolet curable resin with ultraviolet light emitted from a semiconductor light emitting element, in a state in which the ultraviolet curable resin is heated, to cure the ultraviolet curable resin into a coating resin.
Abstract:
An optical fiber connection structure includes a first optical fiber and a second optical fiber each including plural cores and a cladding surrounding outer peripheries of the plural cores, the first optical fiber and the second optical fiber being connected to each other at end faces of the first optical fiber and the second optical fiber, arrangements of the plural cores of the first optical fiber and the second optical fiber matching each other at least partly.
Abstract:
The present invention provides a two-layer structure colored optical fiber which includes a colored secondary coating layer improved in collectability and separability. The two-layer structure colored optical fiber in an embodiment of the present invention includes a glass optical fiber, a primary coating layer coating the glass optical fiber, and a colored secondary coating layer coating the primary coating layer. The secondary coating layer has such characteristics that a surface cure percentage is 99% or more at an infrared absorption peak of a wave number of 1407 cm−1 and a surface kinetic friction force in Knot Test is less than 0.075 N.
Abstract:
A colored optical fiber including a glass optical fiber; a primary coating layer that covers the glass optical fiber; a secondary coating layer that covers the primary coating layer; and a colored layer that coats the secondary coating layer. The relaxation modulus after 24 hours at 60° C. of of the layers coated is 140 MPa or less.
Abstract:
An optical fiber includes: a core portion; and a cladding portion that has a refractive index lower than a maximum refractive index of the core portion and that surrounds an outer periphery of the core portion. The core portion includes a center core doped with germanium, and a low refractive index layer that surrounds an outer periphery of the center core, and in which −Δmax that is a minimum value of a relative refractive-index difference with respect to an average refractive index of the cladding portion is a negative value. A residual compressive stress in the center core is equal to or larger than 40 MPa and equal to or less than 150 MPa, and Δ1 that is an average maximum relative refractive-index difference of the center core with respect to the average refractive index of the cladding portion is equal to or less than 0.8%.
Abstract:
A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
Abstract:
A method of manufacturing an optical fiber wire includes applying ultraviolet curable resin onto the outer periphery of a traveling optical fiber, cooling the ultraviolet curable resin applied to the optical fiber using first cooled inert gas, and curing the ultraviolet curable resin by radiating ultraviolet rays on the ultraviolet curable resin that is cooled by the first cooled inert gas through an ultraviolet transparent tube.
Abstract:
A coated optical fiber, including a coating layer with a high elastic modulus even when a glass optical fiber is coated with resin by using an ultraviolet semiconductor light emitting element as a light source for curing resin and using a Wet-on-Wet method, is provided. A manufacturing method of the coated optical fiber includes: applying a first ultraviolet curable resin to a glass optical fiber; applying a second ultraviolet curable resin to the periphery of the first ultraviolet curable resin before curing the first ultraviolet curable resin; and irradiating the first and second ultraviolet curable resins with light in a wavelength range of 350 to 405 nm emitted from an ultraviolet semiconductor light emitting element, wherein the second ultraviolet curable resin contains a photopolymerization initiator that absorbs the light from the ultraviolet semiconductor light emitting element to generate radicals, and the photopolymerization initiator has photobleaching properties.