Abstract:
An optical fiber has: a core made of silica glass in which a rare earth element and aluminum have been added; an inner cladding layer that is formed around the core, is made of silica glass in which at least any one of an alkali metal and an alkali earth metal has been added, and has a refractive index lower than a refractive index of the core; and an outer cladding layer that is formed around the inner cladding layer and has a refractive index lower than the refractive index of the inner cladding layer.
Abstract:
A production method of an optical fiber preform includes: preparing a plurality of bar-shaped first preforms and a plurality of second preforms including through holes having substantially same shape with a shape of outer periphery of a cross section of the first preform, the cross section being orthogonal to a major axis of the first preform; and an assembly step of: matching the through holes of the second preforms to make communication holes; and inserting, through each of the communication holes, at least two of the first preforms arranged side by side in a direction of the major axis such that the second preforms and the first preforms are fitting each other. In at least one position in the direction of the major axis of the communication holes, a position where the second preforms contact with each other differs from a position where the first preforms contact with each other.
Abstract:
A method of producing a glass preform including: forming a porous glass soot configured by an inner deposition soot deposited on a start material and an outer deposition soot deposited outside the inner deposition soot; and sintering, after the forming, the porous glass soot while doping with fluorine to form a glass body including an inner glass portion and an outer glass layer. An amount of the fluorine, with which the inner deposition soot is doped at the sintering, is equal to or more than 0 g/cm3 and less than an amount of the fluorine with which the outer deposition soot is doped.
Abstract translation:一种制造玻璃预制件的方法,包括:形成由沉积在起始材料上的内部沉积烟灰和沉积在内部沉积烟灰外部的外部沉积烟灰构成的多孔玻璃烟灰; 并且在形成之后,在掺杂氟的同时烧结多孔玻璃烟炱,以形成包括内玻璃部分和外玻璃层的玻璃体。 在烧结时掺杂有内部沉积炭黑的氟量等于或大于0g / cm 3,并且小于掺杂了外部沉积烟炱的氟的量。
Abstract:
A production method of an optical fiber preform includes first preparing a first preform having a plurality of glass preforms and a first cladding portion disposed between the plurality of glass preforms, and first arranging a second cladding portion to surround the first preform. At the first arranging, a material gas and a combustion gas are ejected from a burner to produce glass particles. The first preform and the burner are moved relative to each other in a longitudinal direction of the first preform. The glass particles are deposited on the first preform.
Abstract:
Provided are an optical fiber and a manufacturing method of the optical fiber that can reduce transmission loss even when drawing is performed at a high tension and a high rate. An optical fiber has a core to which chlorine is added and a clad to which fluorine is added, chlorine of 9000 to 13000 ppm is added to the core, a relative refractive index difference Δ1 of the core to a pure silica glass is 0.09 to 0.13%, a relative refractive index difference Δ2 of the clad to a pure silica glass is −0.36 to −0.17%, a difference (Δ1−Δ2) between the relative refractive index difference Δ1 of the core and the relative refractive index difference Δ2 of the clad is larger than or equal to 0.30%, a mode field diameter at wavelength 1.31 μm is 8.8 to 9.6 μm, and a stress difference occurring at an interface between the core and the clad is lower than or equal to 60 MPa.