摘要:
Monolithic optical structures include a plurality of layer with each layer having an isolated optical pathway confined within a portion of the layer. The monolithic optical structure can be used as an optical fiber preform. Alternatively or additionally, the monolithic optical structure can include integrated optical circuits within one or more layers of the structure. Monolithic optical structures can be formed by performing multiple passes of a substrate through a flowing particle stream. The deposited particles form an optical material following consolidation. Flexible optical fibers include a plurality of independent light channels extending along the length of the optical fiber. The fibers can be pulled from an appropriate preform.
摘要:
A method of producing a glass preform including: forming a porous glass soot configured by an inner deposition soot deposited on a start material and an outer deposition soot deposited outside the inner deposition soot; and sintering, after the forming, the porous glass soot while doping with fluorine to form a glass body including an inner glass portion and an outer glass layer. An amount of the fluorine, with which the inner deposition soot is doped at the sintering, is equal to or more than 0 g/cm3 and less than an amount of the fluorine with which the outer deposition soot is doped.
摘要翻译:一种制造玻璃预制件的方法,包括:形成由沉积在起始材料上的内部沉积烟灰和沉积在内部沉积烟灰外部的外部沉积烟灰构成的多孔玻璃烟灰; 并且在形成之后,在掺杂氟的同时烧结多孔玻璃烟炱,以形成包括内玻璃部分和外玻璃层的玻璃体。 在烧结时掺杂有内部沉积炭黑的氟量等于或大于0g / cm 3,并且小于掺杂了外部沉积烟炱的氟的量。
摘要:
A production method for a glass particulate deposit which includes a deposition step in which, at least two liquid source material ejecting ports 31a for a glass source material 23 jetting out from a burner 22 are provided per one burner 22, the area of at least one liquid source material port 31a is 2.25×10−4 or less of the area of the flame forming part of the burner 22, the glass source material 23 is, in the form of a liquid thereof, supplied to each liquid material source port 31a, jetting gas ports 31b are arranged in such a manner that the inner periphery of the jetting gas port is positioned outside by 1.0 mm or less from the outer periphery of each liquid source material port 31a, and a gas is jetted out from each gas jetting port 31b.
摘要:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.
摘要:
An optical waveguide including a core, a buffer surrounding the core, and a cladding surrounding the buffer. The core, the buffer and the cladding include silica glass. A refractive index of the buffer is substantially equal to a refractive index of pure amorphous silica glass. The buffer may reduce bubble formation during manufacturing and may facilitate splicing of the waveguide. A numerical aperture of the waveguide may be fine-tuned by adjusting a radial dimension of the buffer in order to compensate variations in the refractive index of the core.
摘要:
To provide quartz-type glass for a microlithographic projection exposure apparatus, which contains at least 51 mass % of SiO2 and which further contains at least one member selected from the group consisting of lanthanum, aluminum, hafnium, nitrogen, scandium, yttrium and zirconium. It is a material which is useful for an illumination system for a microlithographic projection exposure apparatus or as a projection object lens and has a refractive index at 248 nm larger than 1.508 of quartz glass and a refractive index at 193 nm larger than 1.560 of quartz glass and which can be small-sized.
摘要:
When a synthetic quartz glass substrate is prepared from a synthetic quartz glass block, (I) the block has a hydrogen molecule concentration of 5×1017-1×1019 molecules/cm3, (II) the substrate has a hydrogen molecule concentration of 5×1015-5×1017 molecules/cm3, (III) the substrate has an in-plane variation of its internal transmittance at 193.4 nm which is up to 0.2%, and (IV) the substrate has an internal transmittance of at least 99.6% at 193.4 nm. The synthetic quartz glass substrate has a high transmittance and a uniform transmittance distribution, and is adapted for use with excimer lasers, particularly ArF excimer lasers.
摘要翻译:当从合成石英玻璃块制备合成石英玻璃基板时,(I)该嵌段具有5×10 17分子/ cm 2的氢分子浓度 (II)底物的氢分子浓度为5×10 15 -5×10 17分子/ cm 3,( III)衬底的内部透射率在193.4nm处具有高达0.2%的面内变化,以及(IV)衬底在193.4nm具有至少99.6%的内部透射率。 合成石英玻璃基板具有高透射率和均匀的透射率分布,并且适用于准分子激光器,特别是ArF准分子激光器。
摘要:
A hybrid method of and apparatus for producing a structure capable of being drawn into an optical fiber. The method includes the steps of conducting vapor-phase reactants into an interior region of a glass tube, conducting aerosol form reactants into the interior of the glass tube. The tube is exposed to a heat, thereby causing a reaction among the vapor-phase and aerosol reactants. The reaction yields a product, in a solid form, within the tube. The apparatus includes a reaction tube, a vapor-phase reactant conduit, an aerosol-form conduit, and a heat source. The vapor-phase and aerosol-form reactant conduits facilitate introduction of vapor-phase and aerosol-form reactants into the reaction tube. The aerosol-form reactants are introduced proximate to a reaction zone created by the heat source. The aerosol-form reactants conduit and heat source travel the axial length of the reaction tube.
摘要:
Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
摘要:
A burner and a method for producing an inorganic soot such as silica comprising a plurality of substantially planar layers having multiple openings therethrough formed by a micromachining process. The openings are in fluid communication with a precursor inlet and a gas inlet to permit the gas and the precursor to flow through and exit the burner. The burner produces a flame from a combustible gas in which the precursor undergoes a chemical reaction to form the soot.