Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.