Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
Hierarchical compression includes the contemporaneous implementation of link-layer and higher-layer compression on data flowing over a link. Hierarchical compression can be achieved by configuring network nodes positioned at the link-layer to recognize higher-layer compression symbols embedded in incoming data streams, and to adapt link-layer compression to compensate for those higher-layer compression symbols. One technique for adapting link-layer compression is to perform data chunking in-between higher-layer compression symbols. This may reduce the likelihood that higher-layer compression symbols will interfere with the network nodes ability to identify redundant data chunks at the link-layer. Another technique for adapting link-layer compression is to define the HASH algorithm in such a way that the hash of a data string renders the same hash value as the hash of the higher layer compression symbol corresponding to the data string.
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
An embodiment method of network zoning for a software defined network (SDN) includes determining a number, K, of zones according to at least one zone quantity parameter. Given K, a plurality of network nodes of the SDN are partitioned into K zones. The K zones are respectively assigned K SDN controllers. The K SDN controllers are configured to make traffic engineering decisions and carry out distributed network optimization for respective assigned network nodes among the plurality of network nodes.
Abstract translation:用于软件定义网络(SDN)的网络分区的实施例方法包括根据至少一个区域数量参数来确定区域的数量K。 给定K,SDN的多个网络节点被划分为K个区域。 K个区分别分配了K个SDN控制器。 K SDN控制器被配置为进行流量工程决策,并对多个网络节点之间的相应分配的网络节点进行分布式网络优化。
Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
System and method embodiments are provided for adaptive traffic engineering configuration. The embodiments enable the TE configuration to change in real time in response to changing conditions in the network, the TE algorithm, or other variables such that a TE decision is substantially optimized for current real time conditions. In an embodiment, a method in a network component for adaptable traffic engineering (TE) configuration in software defined networking (SDN) includes receiving at the network component TE configuration information, wherein the TE configuration information comprises information about at least one of network conditions, a TE algorithm, user equipment (UE) information, and the network component, and dynamically changing with the network component the TE configuration in accordance to a change in the TE configuration information.
Abstract:
System and method embodiments are provided for traffic behavior driven dynamic zoning for distributed traffic engineering (TE) in software defined networking (SDN). In an embodiment, a method in a network component for dynamic zoning for TE in SDN includes receiving at the network component network information from at least one SDN controller from a plurality of SDN controllers in a network; determining with the network component a plurality of TE zones for the network, selecting a local zone TE controller for each of the plurality of TE zones, and selecting a master TE controller according to the network information and a zoning scheme, wherein the local zone TE controller and the master TE controller are selected form one of the SDN controllers; and transmitting with the network component an indication of the local zone TE controllers, zone membership, and the master controllers to at least some of the SDN controllers.
Abstract:
A network includes network components configured to perform a method for on-demand radio coordination. The method includes determining a congested radio node in a plurality of radio nodes in the network in response to congestion information received from a network device. The method includes generating a cluster of radio nodes associated with the congested radio node. The method also includes optimizing radio resources of the radio nodes in the cluster to produce cluster optimization results configured to alleviate congestion of the congested radio node. The method further includes transmitting the cluster optimization results to the radio nodes in the cluster to alleviate the congestion.
Abstract:
An embodiment of a method for network resource management comprises performing joint traffic engineering and physical layer power control on a controller and using a routing and power control optimization process that comprises a combined alternating direction method of multipliers (ADMM) process and a power management process. First and second commands are generated at the controller according to optimization parameters determined by the routing and power control optimization process. The first and second commands are transmitted from the controller to nodes connected to the controller. The first commands are for modifying transmission parameters for links between nodes and the second commands are for modifying transmission parameters for connections between nodes and user devices.