摘要:
In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
摘要:
In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
摘要:
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field BG superimposed on the B0, where the BG comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency ω in a laboratory frame. The Fourier-encoded NMR signal is detected.
摘要:
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field BG superimposed on the B0, where the BG comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency ω in a laboratory frame. The Fourier-encoded NMR signal is detected.