Method for representing objects with concentric ring signature descriptors for detecting 3D objects in range images
    1.
    发明授权
    Method for representing objects with concentric ring signature descriptors for detecting 3D objects in range images 有权
    用于表示具有同心环签名描述符的对象的方法,用于检测范围图像中的3D对象

    公开(公告)号:US08274508B2

    公开(公告)日:2012-09-25

    申请号:US13026382

    申请日:2011-02-14

    IPC分类号: G06T15/00

    CPC分类号: G06K9/00214 G06K9/6214

    摘要: A 3D object is represented by a descriptor, wherein a model of the 3D object is a 3D point cloud. A local support for each point p in the 3D point cloud is located, and reference x, y, and z axes are generated for the local support. A polar grid is applied according to the references x, y, and z axes a along an azimuth and a radial directions on an xy plane centered on the point p such that each patch on the grid is a bin for a 2D histogram, wherein the 2D histogram is a 2D matrix F on the grid and each coefficient of the 2D matrix F corresponds to the patch on the grid. For each grid location (k, l), an elevation value F(k, l) is estimated by interpolating the elevation values of the 3D points within the patches to produce the descriptor for the point p.

    摘要翻译: 3D对象由描述符表示,其中3D对象的模型是3D点云。 定位在3D点云中的每个点p的本地支持,为本地支持生成参考x,y和z轴。 根据参考x,y和z轴a沿着位于点p上的xy平面上的方位角和径向方向施加极坐标网格,使得网格上的每个贴片是2D直方图的仓,其中, 2D直方图是网格上的2D矩阵F,2D矩阵F的每个系数对应于网格上的补丁。 对于每个网格位置(k,l),通过内插补片内的3D点的高程值来估计高程值F(k,l),以产生点p的描述符。

    Representing Object Shapes Using Radial Basis Function Support Vector Machine Classification
    2.
    发明申请
    Representing Object Shapes Using Radial Basis Function Support Vector Machine Classification 有权
    使用径向基函数表示对象形状支持向量机分类

    公开(公告)号:US20120207384A1

    公开(公告)日:2012-08-16

    申请号:US13026469

    申请日:2011-02-14

    IPC分类号: G06K9/62

    摘要: A shape of an object is represented by a set of points inside and outside the shape. A decision function is learned from the set of points an object. Feature points in the set of points are selected using the decision function, or a gradient of the decision function, and then a local descriptor is determined for each feature point.

    摘要翻译: 物体的形状由形状内部和外部的一组点表示。 从一组对象获取决策函数。 使用决策函数或决策函数的梯度来选择点集合中的特征点,然后为每个特征点确定局部描述符。

    Method for Representing Objects with Concentric Ring Signature Descriptors for Detecting 3D Objects in Range Images
    4.
    发明申请
    Method for Representing Objects with Concentric Ring Signature Descriptors for Detecting 3D Objects in Range Images 有权
    用于检测距离图像中3D对象的同心环签名描述符的对象的方法

    公开(公告)号:US20120206438A1

    公开(公告)日:2012-08-16

    申请号:US13026382

    申请日:2011-02-14

    IPC分类号: G06T15/00

    CPC分类号: G06K9/00214 G06K9/6214

    摘要: A 3D object is represented by a descriptor, wherein a model of the 3D object is a 3D point cloud. A local support for each point p in the 3D point cloud is located, and reference x, y, and z axes are generated for the local support. A polar grid is applied according to the references x, y, and z axes a along an azimuth and a radial directions on an xy plane centered on the point p such that each patch on the grid is a bin for a 2D histogram, wherein the 2D histogram is a 2D matrix F on the grid and each coefficient of the 2D matrix F corresponds to the patch on the grid. For each grid location (k, l), an elevation value F(k, l) is estimated by interpolating the elevation values of the 3D points within the patches to produce the descriptor for the point p.

    摘要翻译: 3D对象由描述符表示,其中3D对象的模型是3D点云。 定位在3D点云中的每个点p的本地支持,为本地支持生成参考x,y和z轴。 根据参考x,y和z轴a沿着位于点p上的xy平面上的方位角和径向方向施加极坐标网格,使得网格上的每个贴片是2D直方图的仓,其中, 2D直方图是网格上的2D矩阵F,2D矩阵F的每个系数对应于网格上的补丁。 对于每个网格位置(k,l),通过内插补片内的3D点的高程值来估计高程值F(k,l),以产生点p的描述符。

    3D object tracking in multiple 2D sequences
    5.
    发明授权
    3D object tracking in multiple 2D sequences 有权
    3D对象跟踪在多个2D序列

    公开(公告)号:US09076227B2

    公开(公告)日:2015-07-07

    申请号:US13632500

    申请日:2012-10-01

    申请人: Fatih Porikli Feng Li

    发明人: Fatih Porikli Feng Li

    IPC分类号: G06K9/00 G06T7/20

    摘要: A tumor is tracked in multiple sequences of images acquired concurrently from different viewpoints. Features are extracted in each set of current images using a window. A regression function, subject to motion constraints, is applied to the features to obtain 3D motion parameters, which are applied to the tumor as observed in the images to obtain a 3D location of the object. Then, the shape of the 3D object at the 3D location is projected onto each image to update the location of the window for the next set of images to be processed.

    摘要翻译: 以不同观点同时获得的多个图像序列跟踪肿瘤。 使用窗口在每组当前图像中提取特征。 受到运动约束的回归函数被应用于特征以获得3D运动参数,其被应用于在图像中观察到的肿瘤以获得对象的3D位置。 然后,将3D位置处的3D对象的形状投影到每个图像上,以更新要处理的下一组图像的窗口的位置。

    Method for compressing textured images
    6.
    发明授权
    Method for compressing textured images 失效
    压缩纹理图像的方法

    公开(公告)号:US08433148B2

    公开(公告)日:2013-04-30

    申请号:US13076522

    申请日:2011-03-31

    申请人: Fatih Porikli

    发明人: Fatih Porikli

    IPC分类号: G06K9/36 G06K9/46

    CPC分类号: H03M7/30 H04N19/85 H04N19/97

    摘要: A method compresses an image partitioned into blocks of pixels, for each block the method converts the block to a 2D matrix. The matrix is decomposing into a column matrix and a row matrix, wherein a width of the column matrix is substantially smaller than a height of the column matrix and the height of the row matrix is substantially smaller than the width of the row matrix. The column matrix and the row matrix are compressed, and the compressed matrices are then combined to form a compressed image.

    摘要翻译: 一种方法将分割成像素块的图像压缩,对于每个块,该方法将块转换为2D矩阵。 矩阵分解为列矩阵和行矩阵,其中列矩阵的宽度基本上小于列矩阵的高度,并且行矩阵的高度基本上小于行矩阵的宽度。 列矩阵和行矩阵被压缩,然后将压缩的矩阵组合以形成压缩图像。

    Method for Tracking Tumors in Bi-Plane Images
    8.
    发明申请
    Method for Tracking Tumors in Bi-Plane Images 有权
    双平面图像跟踪肿瘤的方法

    公开(公告)号:US20120250933A1

    公开(公告)日:2012-10-04

    申请号:US13075822

    申请日:2011-03-30

    IPC分类号: G06K9/34

    摘要: A tumor is tracked in sequences of biplane images by generating a set of segmentation hypotheses using a 3D model of the tumor, a biplane geometry, and a previous location of the tumor as determined from the pairs of biplane images. Volume prior probabilities are constructed based on the set of hypotheses. Seed pixels are selected using the volume prior probabilities, and a bi-plane dual image graph is constructed using intensity gradients and the seed pixels to obtaining segmentation masks corresponding to tumor boundaries using the image intensities to determine a current location of the tumor.

    摘要翻译: 通过使用从双平面图像对确定的肿瘤的3D模型,双平面几何形状和肿瘤的先前位置生成一组分割假设来跟踪双平面图像的序列。 体积先验概率是基于一组假设构建的。 使用体积先验概率选择种子像素,并且使用强度梯度和种子像素构建双平面双图像图像,以使用图像强度获得对应于肿瘤边界的分割掩模,以确定肿瘤的当前位置。

    Method of extracting and searching integral histograms of data samples
    9.
    发明申请
    Method of extracting and searching integral histograms of data samples 失效
    提取和搜索数据样本的积分直方图的方法

    公开(公告)号:US20060177131A1

    公开(公告)日:2006-08-10

    申请号:US11052598

    申请日:2005-02-07

    申请人: Fatih Porikli

    发明人: Fatih Porikli

    IPC分类号: G06K9/00

    摘要: A computer implemented method extracts an integral histogram from sampled data, such as time series data, images, and volumetric data. First, a set of samples is acquired from a real-word signal. The set of samples is scanned in a predetermined order. For each current sample, an integral histogram integrating a histogram of the current sample and integral histograms of previously scanned samples is constructed.

    摘要翻译: 计算机实现的方法从诸如时间序列数据,图像和体积数据的采样数据中提取积分直方图。 首先,从真实字信号中获取一组样本。 以预定的顺序扫描该组样本。 对于每个当前样本,构建一个集成了当前样本的直方图和先前扫描样本的积分直方图的积分直方图。

    Detecting roads in aerial images using feature-based classifiers
    10.
    发明申请
    Detecting roads in aerial images using feature-based classifiers 失效
    使用基于特征的分类器检测航空图像中的道路

    公开(公告)号:US20060078205A1

    公开(公告)日:2006-04-13

    申请号:US10961926

    申请日:2004-10-08

    IPC分类号: G06K9/46

    摘要: A method detects roads in an aerial image of ground topology by determining low-level features, such as intensities and gradients, for each pixel in the aerial image, determining middle-level features, such as an orientation for each pixel from the low-level features, and determining high-level features from the middle-level features. Each high-level feature is assigned a probability, and the probabilities of the high-level features for each pixel are normalized and aggregated to a single probability that the pixel is associated with a road.

    摘要翻译: 一种方法通过确定空中图像中每个像素的低级特征(如强度和梯度)来检测地面拓扑的空中图像中的道路,确定中间层特征,例如来自低层的每个像素的取向 功能,并确定中级功能的高级功能。 每个高级特征被分配概率,并且将每个像素的高级特征的概率归一化并聚合成像素与道路相关联的单一概率。