Waveguide structure and optical system with waveguide structure

    公开(公告)号:US10833478B2

    公开(公告)日:2020-11-10

    申请号:US16327419

    申请日:2017-08-21

    摘要: The inventive waveguide structure comprises a first waveguide region having a constant first width adapted to guide electromagnetic waves mode sustainably along its longitudinal axis; a second waveguide region adapted to guide electromagnetic waves mode sustainably along its longitudinal axis, wherein the longitudinal axis of the first waveguide region and the longitudinal axis of the second waveguide region form a common longitudinal axis of the waveguide structure, wherein a first end face of the first waveguide region and a first end face of the second waveguide region are aligned with each other, the width of the first end face of the second waveguide region corresponding to the first width, and the width of the second waveguide region along its longitudinal axis widens from the first end face to a second end face to a second width greater than the first width.

    DIODE LASER AND METHOD FOR MANUFACTURING A HIGH-EFFICIENCY DIODE LASER
    2.
    发明申请
    DIODE LASER AND METHOD FOR MANUFACTURING A HIGH-EFFICIENCY DIODE LASER 有权
    二极管激光器和制造高效二极管激光器的方法

    公开(公告)号:US20130128911A1

    公开(公告)日:2013-05-23

    申请号:US13682848

    申请日:2012-11-21

    IPC分类号: H01L33/10 H01S5/187 H01L33/00

    摘要: A diode laser having aluminum-containing layers and a Bragg grating for stabilizing the emission wavelength achieves an improved output/efficiency. The growth process is divided into two steps for introducing the Bragg grating, wherein a continuous aluminum-free layer and an aluminum-free mask layer are continuously deposited after the first growth process such that the aluminum-containing layer is completely covered by the continuous aluminum-free layer. Structuring is performed outside the reactor without unwanted oxidation of the aluminum-containing semiconductor layer. Subsequently, the pre-structured semiconductor surface is further etched inside the reactor and the structuring is impressed into the aluminum-containing layer. In this process, so little oxygen is inserted into the semiconductor crystal of the aluminum-containing layers in the environment of the grating that output and efficiency of a diode laser are not reduced as compared to a diode laser without grating layers that was produced in an epitaxy step.

    摘要翻译: 具有含铝层的二极管激光器和用于稳定发射波长的布拉格光栅实现了改进的输出/效率。 生长过程分为引入布拉格光栅的两个步骤,其中连续的无铝层和不含铝的掩模层在第一生长工艺之后连续沉积,使得含铝层被连续的铝完全覆盖 - 自由层。 在反应器外部进行结构化,而不含有铝氧化半导体层。 随后,在反应器内进一步蚀刻预构造的半导体表面,并将构造施加到含铝层中。 在这个过程中,在光栅的环境中少量的氧被插入到含铝层的半导体晶体中,与不产生光栅层的二极管激光器相比,二极管激光器的输出和效率没有降低 外延步骤

    DIODE LASER HAVING REDUCED BEAM DIVERGENCE

    公开(公告)号:US20210305772A1

    公开(公告)日:2021-09-30

    申请号:US17218926

    申请日:2021-03-31

    IPC分类号: H01S5/042 H01S5/22

    摘要: The present disclosure relates to a diode laser having reduced beam divergence. Some implementations reduce a beam divergence in the far field by means of a deliberate modulation of the real refractive index of the diode laser. An area of the diode laser (e.g., the injection zone), may be structured with different materials having different refractive indices. In some implementations, the modulation of the refractive index makes it possible to excite a supermode, the field of which has the same phase (in-phase mode) under the contacts. Light, which propagates under the areas of a lower refractive index, obtains a phase shift of π after passing through the index-guiding trenches. Consequently, the in-phase mode is supported and the formation of the out-of-phase mode is prevented. Consequently, the laser field can, in this way, be stabilized even at high powers such that only a central beam lobe remains in the far field.

    Diode laser and method for manufacturing a high-efficiency diode laser
    4.
    发明授权
    Diode laser and method for manufacturing a high-efficiency diode laser 有权
    二极管激光器及制造高效二极管激光器的方法

    公开(公告)号:US08846425B2

    公开(公告)日:2014-09-30

    申请号:US13682848

    申请日:2012-11-21

    摘要: A diode laser having aluminum-containing layers and a Bragg grating for stabilizing the emission wavelength achieves an improved output/efficiency. The growth process is divided into two steps for introducing the Bragg grating, wherein a continuous aluminum-free layer and an aluminum-free mask layer are continuously deposited after the first growth process such that the aluminum-containing layer is completely covered by the continuous aluminum-free layer. Structuring is performed outside the reactor without unwanted oxidation of the aluminum-containing semiconductor layer. Subsequently, the pre-structured semiconductor surface is further etched inside the reactor and the structuring is impressed into the aluminum-containing layer. In this process, so little oxygen is inserted into the semiconductor crystal of the aluminum-containing layers in the environment of the grating that output and efficiency of a diode laser are not reduced as compared to a diode laser without grating layers that was produced in an epitaxy step.

    摘要翻译: 具有含铝层的二极管激光器和用于稳定发射波长的布拉格光栅实现了改进的输出/效率。 生长过程分为引入布拉格光栅的两个步骤,其中连续的无铝层和不含铝的掩模层在第一生长工艺之后连续沉积,使得含铝层被连续的铝完全覆盖 - 自由层。 在反应器外部进行结构化,而不含有铝氧化半导体层。 随后,在反应器内进一步蚀刻预构造的半导体表面,并将构造施加到含铝层中。 在这个过程中,在光栅的环境中少量的氧被插入到含铝层的半导体晶体中,与不产生光栅层的二极管激光器相比,二极管激光器的输出和效率没有降低 外延步骤