Abstract:
In the arrayed semiconductor optical device, a plurality of semiconductor optical devices including a first semiconductor optical device and a second semiconductor optical device are monolithically integrated on a semiconductor substrate, each of the semiconductor optical devices includes a first semiconductor layer having a multiple quantum well layer and a grating layer disposed on an upper side of the first semiconductor layer, a layer thickness of the first semiconductor layer of the first semiconductor optical device is thinner than a layer thickness of the first semiconductor layer of the second semiconductor optical device, and a height of the grating layer of the first semiconductor optical device is lower than a height of the grating layer of the second semiconductor optical device corresponding to difference in the layer thickness of the first semiconductor layer.
Abstract:
A light-emitting semiconductor chip (100) is provided, having a first semiconductor layer (1), which is at least part of an active layer provided for generating light and which has a lateral variation of a material composition along at least one direction of extent. Additionally provided is a method for producing a semiconductor chip (100).
Abstract:
A device including a non-polarization material includes a number of layers. A first layer of silicon (100) defines a U-shaped groove having a bottom portion (100) and silicon sidewalls (111) at an angle to the bottom portion (100). A second layer of a patterned dielectric on top of the silicon (100) defines vertical sidewalls of the U-shaped groove. A third layer of a buffer covers the first layer and the second layer. A fourth layer of gallium nitride is deposited on the buffer within the U-shaped groove, the fourth layer including cubic gallium nitride (c-GaN) formed at merged growth fronts of hexagonal gallium nitride (h-GaN) that extend from the silicon sidewalls (111), wherein a deposition thickness (h) of the gallium nitride above the first layer of silicon (100) is such that the c-GaN completely covers the h-GaN between the vertical sidewalls.
Abstract:
A nitride semiconductor light emitting device includes a first coat film of aluminum nitride or aluminum oxynitride formed at a light emitting portion and a second coat film of aluminum oxide formed on the first coat film. The thickness of the second coat film is at least 80 nm and at most 1000 nm. Here, the thickness of the first coat film is preferably at least 6 nm and at most 200 nm.
Abstract:
A high-quality nitride crystal can be produced efficiently by charging a nitride crystal starting material that contains tertiary particles having a maximum diameter of from 1 to 120 mm and formed through aggregation of secondary particles having a maximum diameter of from 100 to 1000 μm, in the starting material charging region of a reactor, followed by crystal growth in the presence of a solvent in a supercritical state and/or a subcritical state in the reactor, wherein the nitride crystal starting material is charged in the starting material charging region in a bulk density of from 0.7 to 4.5 g/cm3 for the intended crystal growth.
Abstract:
A nitride semiconductor light emitting device includes a first coat film of aluminum nitride or aluminum oxynitride formed at a light emitting portion and a second coat film of aluminum oxide formed on the first coat film. The thickness of the second coat film is at least 80 nm and at most 1000 nm. Here, the thickness of the first coat film is preferably at least 6 nm and at most 200 nm.
Abstract:
A top emitting VCSEL array may be coupled to a separate heat spreading superstrate that may be positioned above the apertures of the array and that may be able to transmit the emitted beams through the heat spreading superstrate. The VCSEL devices in the array may be controlled by an electrical connection to a pattern of conductive elements positioned in close contact with, but electrically isolated from, the heat spreading superstrate. The conductive elements may electrically control one or more of the VCSEL devices to enable sectional control of the light output. The elements may also be arraigned in a ground-signal-ground or coplanar waveguide configuration to improve the frequency response of the array.
Abstract:
Provided is a method of manufacturing a photonic crystal, including: a first step of forming, on a surface of a substrate, a protective mask for selective growth, the protective mask having an opening pattern opened therein; a second step of selectively growing a columnar semiconductor from an exposed portion of the surface of the substrate not having the mask formed thereon, laterally overgrowing the semiconductor layer on the mask, and embedding the mask; a third step of forming a photonic crystal in the semiconductor layer so that openings in the opening pattern and the one of pores and grooves which form the photonic crystal are at least partly overlapped each other when seen from a direction perpendicular to the surface of the substrate; a fourth step of removing at least part of the columnar semiconductor; and a fifth step of removing at least part of the mask.
Abstract:
A quantum nanodot 3 is formed of a semiconductor and has an outer diameter in two-dimensional directions which is not more than twice a bore radius of an exciton in the semiconductor. A two-dimensional quantum nanodot array 1 has a structure that the quantum nanodots 3 are two-dimensionally and uniformly arranged with a spacing between the quantum nanodots 3 being 1 nm or more. The two-dimensional nanodot array 1 may include an intermediate layer 6 which is made of a semiconductor or an insulator and is filled between the quantum nanodot arrays 10. Since the quantum nanodots have high orientation and high density, a high quantum confinement effect is attained. Therefore, the quantum nanodot 3 made of Si produces direct transition type luminescence. It is possible to control an optical property and a transport property of the two-dimensional quantum nanodot array 10.
Abstract:
A method of manufacturing a semiconductor layer with which inactivation of impurity is able to be inhibited by a simple method, a semiconductor layer in which inactivation of impurity is inhibited, a method of manufacturing a laser diode with which inactivation of impurity is able to be inhibited by a simple method, and a laser diode including a semiconductor layer in which inactivation of impurity is inhibited are provided. In the method of manufacturing a semiconductor layer, after a semiconductor layer is formed by epitaxial growth with the use of AsH3, supply of AsH3 is stopped without separately supplying new gas when process temperature is 500 deg C. or more.