Abstract:
A laser system for medical treatment is disclosed which comprises a pump, wherein the laser system is adapted to be operated in pulsed operation so that at least one laser pulse of a temporally limited pulse duration (Tp) is generated. The generated laser pulse irradiates some part of the human or animal body so that a two-dimensional laser spot S is located on the top layer of the irradiated part of the human or animal body. The pump power of the pump of the laser system is modulated in such a way that the cumulative energy ES(Tp/2) which is delivered by said laser pulse to said laser spot S during the first half of the pulse duration is less than 45% of the energy ES(Tp) which is delivered by said laser pulse to said laser spot S during the entire pulse duration Tp.
Abstract:
A laser system for medical treatment is disclosed which comprises a pump, wherein the laser system is adapted to be operated in pulsed operation so that at least one laser pulse of a temporally limited pulse duration (Tp) is generated. The generated laser pulse irradiates some part of the human or animal body so that a two-dimensional laser spot S is located on the top layer of the irradiated part of the human or animal body. The pump power of the pump of the laser system is modulated in such a way that the cumulative energy ES(Tp/2) which is delivered by said laser pulse to said laser spot S during the first half of the pulse duration is less than 45% of the energy ES(Tp) which is delivered by said laser pulse to said laser spot S during the entire pulse duration Tp.
Abstract:
A Laser system is disclosed which comprises a pump, wherein the laser system is adapted to be operated in pulsed operation so that at least one individual pulse of a temporally limited pulse duration (T0) is generated, wherein the pulse ablates a material such that a debris cloud forms above the ablated material. Further, the pump power of the pump is modulated in such a way that the following three conditions are fulfilled: (1) the intensity of the pulse oscillates between maximum values and minimum values during the pulse duration, wherein the laser pulse comprises a plurality of intensity maxima Imax which occur at times {Ti, i=1, . . . N}; and a plurality of intensity minima Imin which occur at times {tk, k=1, . . . (N−1)}, wherein the intensity does not vanish at the intensity minima; (2) the intensity oscillations of the laser pulse induce oscillations of the size of the debris cloud so that, during the pulse duration (T0), there are at least two maxima of the size of the debris cloud which occur at times {Tj, j=1, . . . M} and which are located in between two intensity maxima of the laser pulse; and (3) at least 70 percent of the maxima of the size of the debris cloud occur near an intensity minimum of the pulse such that, for at least 70 percent of the maxima of the size of the debris cloud, the intensity of the pulse I(Tj) at the time of the maximum of the size of the debris cloud is smaller than Imin(tk)+0.5×[Imax(Ti)−Imin(tk)], wherein Imin(tk) is the intensity minimum of the pulse which is closest to the maximum of the size of the debris cloud at time Tj and Imax(Ti) is the intensity maximum of the pulse which is closest to the maximum of the size of the debris cloud at time Tj.
Abstract:
A Laser system is disclosed which comprises a pump, wherein the laser system is adapted to be operated in pulsed operation so that at least one individual pulse of a temporally limited pulse duration (T0) is generated, wherein the pulse ablates a material such that a debris cloud forms above the ablated material. Further, the pump power of the pump is modulated in such a way that the following three conditions are fulfilled: (1) the intensity of the pulse oscillates between maximum values and minimum values during the pulse duration, wherein the laser pulse comprises a plurality of intensity maxima Imax which occur at times {Ti, i=1, . . . N}; and a plurality of intensity minima Imin which occur at times {tk, k=1, . . . (N−1)}, wherein the intensity does not vanish at the intensity minima; (2) the intensity oscillations of the laser pulse induce oscillations of the size of the debris cloud so that, during the pulse duration (T0), there are at least two maxima of the size of the debris cloud which occur at times {tj, J=1, . . . M} and which are located in between two intensity maxima of the laser pulse; and (3) at least 70 percent of the maxima of the size of the debris cloud occur near an intensity minimum of the pulse such that, for at least 70 percent of the maxima of the size of the debris cloud, the intensity of the pulse I(tj) at the time of the maximum of the size of the debris cloud is smaller than Imin(tk)+0.5× [Imax(Ti)−Imin(tk)], wherein Imin(tk) is the intensity minimum of the pulse which is closest to the maximum of the size of the debris cloud at time tj and Imax(Ti) is the intensity maximum of the pulse which is closest to the maximum of the size of the debris cloud at time tj.