摘要:
An ink manifold constructed with a number of semiconductor tiles which are fastened end to end on a rigid base member to form a page wide print mechanism. Each tile is constructed with ink channels on one side in liquid communication with ink outlet ports on the opposite side. The ink channels carry ink from ports in the base member to the outlet ports of the tiles. The interface between each tile defines a boundary. An inkjet printhead is fastened over each boundary of the tiled manifold so that the ink inlet ports of the printhead are aligned with the ink outlet ports of the underlying tiles. No ink passes across the boundary of the adjacent manifold tiles. The fabrication of the individual tiles from a semiconductor wafer facilitates usage of the wafer when fabricating page wide print mechanisms.
摘要:
A composite ceramic substrate for receiving an ejection head chip for a micro-fluid ejection head and a method for making the composite ceramic substrate. The substrate includes a high temperature previously fired ceramic base having a substantially planarized first surface and at least one fluid supply slot therethrough. A low temperature co-fired ceramic (LTCC) tape layer bundle having at least two LTCC tape layers is attached to the ceramic base at an interface between the LTCC tape layer bundle and the first surface of the ceramic base. The LTTC tape layer bundle has at least one chip pocket therein and at least one of the LTCC tape layers includes a plurality of conductors.
摘要:
Micro-fluid ejection devices, methods for making micro-fluid ejection, heads, and micro-fluid ejection heads having N actuators on a first substrate and logic capable of driving the N actuators on a second substrate. The ejection heads also have less than N electrical connections between the first and second substrates.
摘要:
An ink jetting structure includes a substrate that has a first surface and a second surface. A heater chip is mounted to the second surface of the substrate, and includes a first set of electrical contacts. A printhead circuit member has a third surface, a fourth surface, and an opening configured to receive the heater chip with the first set of electrical contacts of the heater chip being exposed through the opening. The third surface is mounted to the second surface of the substrate. The fourth surface has a second set of electrical contacts attached by wire bonds to the first set of electrical contacts. The third surface has a third set of electrical contacts electrically coupled to the second set of electrical contacts, and electrically connected to a flexible cable for coupling to corresponding contacts on a printer.
摘要:
A composite ceramic substrate for receiving an ejection head chip for a micro-fluid ejection head and a method for making the composite ceramic substrate. The substrate includes a high temperature previously fired ceramic base having a substantially planarized first surface and at least one fluid supply slot therethrough. A low temperature co-fired ceramic (LTCC) tape layer bundle having at least two LTCC tape layers is attached to the ceramic base at an interface between the LTCC tape layer bundle and the first surface of the ceramic base. The LTCC tape layer bundle has at least one chip pocket therein and at least one of the LTCC tape layers includes a plurality of conductors.
摘要:
Micro-fluid ejection devices, methods for making micro-fluid ejection, heads, and micro-fluid ejection heads having N actuators on a first substrate and logic capable of driving the N actuators on a second substrate. The ejection heads also have less than N electrical connections between the first and second substrates.
摘要:
A composite ceramic substrate for receiving an ejection head chip for a micro-fluid ejection head and a method for making the composite ceramic substrate. The substrate includes a high temperature previously fired ceramic base having a substantially planarized first surface and at least one fluid supply slot therethrough. A low temperature co-fired ceramic (LTCC) tape layer bundle having at least two LTCC tape layers is attached to the ceramic base at an interface between the LTCC tape layer bundle and the first surface of the ceramic base. The LTTC tape layer bundle has at least one chip pocket therein and at least one of the LTCC tape layers includes a plurality of conductors.
摘要:
An ink jetting structure includes a substrate that has a first surface and a second surface. A heater chip is mounted to the second surface of the substrate, and includes a first set of electrical contacts. A printhead circuit member has a third surface, a fourth surface, and an opening configured to receive the heater chip with the first set of electrical contacts of the heater chip being exposed through the opening. The third surface is mounted to the second surface of the substrate. The fourth surface has a second set of electrical contacts attached by wire bonds to the first set of electrical contacts. The third surface has a third set of electrical contacts electrically coupled to the second set of electrical contacts, and electrically connected to a flexible cable for coupling to corresponding contacts on a printer.
摘要:
A composite ceramic substrate for receiving an ejection head chip for a micro-fluid ejection head and a method for making the composite ceramic substrate. The substrate includes a high temperature previously fired ceramic base having a substantially planarized first surface and at least one fluid supply slot therethrough. A low temperature co-fired ceramic (LTCC) tape layer bundle having at least two LTCC tape layers is attached to the ceramic base at an interface between the LTCC tape layer bundle and the first surface of the ceramic base. The LTTC tape layer bundle has at least one chip pocket therein and at least one of the LTCC tape layers includes a plurality of conductors.
摘要:
A micro-fluid ejection head has an ejection chip to expel fluid. It connects to a laminate construct. The construct has vertically configured wiring layers interspersed with non-wiring layers, such as carbon fiber layers. An upper of the wiring layers electrically connects to the ejection chip. The upper layer may also support a planar undersurface of the chip directly on a surface or in a recessed pocket. The two can connect with a die bond, such as one having silica or boron nitride. Fluid connections exist between ink feed slots of the chip and the laminate construct. A silicon tile or other material may also fluidly interconnect with the two. A plastic manifold optionally supports the laminate construct and may fluidly connect to it. The wiring layers of the laminate contemplate ground, power, and various bond pads. Other construct layers contemplate prepreg or core FR4 layers.