摘要:
Actuation for control of surfaces is provided through use of a conducting material comprising electrolyte particles electrically charged with electromagnetic fields in boundary layers. Interactions of the electrically charged particles with electromagnetic fields in boundary layers are coordinated for generation of control forces for various applications.
摘要:
The system and method described herein uses a hybrid pulsed detonation engine (PDE) system to drive a turbine that powers an electric generator. The combustion chamber of the PDE is shaped in a helical form, so that the external length of the section is reduced, while maintaining the distance for acceleration to detonation. This allows the achievement of deflagration to detonation transition without the help of turbulence enhancing obstacles, while keeping the overall size of the detonation tube small. The PDE output can be scaled by: increasing the cross sectional area of the detonation chamber; increasing the number of detonation tubes; and increasing the frequency of operation of the PDE. The replacement of conventional deflagrative internal combustion engines, including gas turbines and reciprocating engines, with pulsed detonation engines for electric power generation, may provide fuel savings and have a lower environmental impact.
摘要:
A method of rotating a crank shaft and in internal detonation engine are provided. The internal detonation engine comprises a deflagration to detonation transition section. The deflagration to detonation transition section is connected to a main cylinder, which houses a piston. Inducing a detonation wave from the deflagration wave and passing the detonation wave through a fluid, gives rise to high pressure and temperature in a cylinder and pushes a piston towards bottom dead center. An internal detonation reciprocating engine may be a single cylinder and may be either a two or four stroke engine. A two-stroke internal detonation reciprocating engine is similar to a four-stroke internal detonation reciprocating engine but has different valve placements. Detonations produce a more thorough combustion of the fuel and may, thereby, yield reduced emissions of carbon monoxide as compared to internal combustion engines.
摘要:
The system and method described herein uses a hybrid pulsed detonation engine (PDE) system to drive a turbine that powers an electric generator. The combustion chamber of the PDE is shaped in a helical form, so that the external length of the section is reduced, while maintaining the distance for acceleration to detonation. This allows the achievement of deflagration to detonation transition without the help of turbulence enhancing obstacles, while keeping the overall size of the detonation tube small. The PDE output can be scaled by: increasing the cross sectional area of the detonation chamber; increasing the number of detonation tubes; and increasing the frequency of operation of the PDE. The replacement of conventional deflagrative internal combustion engines, including gas turbines and reciprocating engines, with pulsed detonation engines for electric power generation, may provide fuel savings and have a lower environmental impact.
摘要:
A method of rotating a crank shaft and in internal detonation engine are provided. The internal detonation engine comprises a deflagration to detonation transition section. The deflagration to detonation transition section is connected to a main cylinder, which houses a piston. Inducing a detonation wave from the deflagration wave and passing the detonation wave through a fluid, gives rise to high pressure and temperature in a cylinder and pushes a piston towards bottom dead center. An internal detonation reciprocating engine may be a single cylinder and may be either a two or four stroke engine. A two-stroke internal detonation reciprocating engine is similar to a four-stroke internal detonation reciprocating engine but has different valve placements. Detonations produce a more thorough combustion of the fuel and may, thereby, yield reduced emissions of carbon monoxide as compared to internal combustion engines.
摘要:
A method of rotating a crank shaft and in internal detonation engine are provided. The internal detonation engine comprises a deflagration to detonation transition section. The deflagration to detonation transition section is connected to a main cylinder, which houses a piston. Inducing a detonation wave from the deflagration wave and passing the detonation wave through a fluid, gives rise to high pressure and temperature in a cylinder and pushes a piston towards bottom dead center. An internal detonation reciprocating engine may be a single cylinder and may be either a two or four stroke engine. A two-stroke internal detonation reciprocating engine is similar to a four-stroke internal detonation reciprocating engine but has different valve placements. Detonations produce a more thorough combustion of the fuel and may, thereby, yield reduced emissions of carbon monoxide as compared to internal combustion engines.
摘要:
A multi-mode propulsion system for potential application to hypersonic and aerospace planes. The system can employ various propulsion modes at various points in time, with the propulsion system employed at a given point in time being selected according to the velocity of the inlet airflow. In one embodiment, the propulsion system of the present invention has an ejector-augmented pulsed detonation rocket propulsion mode, a pulsed normal detonation wave engine mode, a steady oblique detonation wave engine mode, and a pure pulsed detonation rocket mode.
摘要:
A pulsed detonation engine may include a detonation tube for receiving fuel and an oxidizer to be detonated therein, one or more fuel-oxidizer injectors for injecting the fuel and oxidizer into the detonation tube, one or more purge air injectors for injecting purge air into the detonation tube for purging the detonation tube, and an ignition for igniting the fuel and oxidizer in the detonation tube so as to initiate detonation thereof. The detonation tube has an upstream end, a downstream end, and an axially extended portion extending from the upstream end to the downstream end and having a perimeter. The fuel-oxidizer injectors and purge air injectors may be disposed at least along the axially extended portion. The ignition may include a plurality of igniters disposed at or near the perimeter of the axially extended portion, spaced about the perimeter, at or near the upstream end of the detonation tube.
摘要:
A pulsed detonation engine may include a detonation tube for receiving fuel and an oxidizer to be detonated therein, one or more fuel-oxidizer injectors for injecting the fuel and oxidizer into the detonation tube, one or more purge air injectors for injecting purge air into the detonation tube for purging the detonation tube, and an ignition for igniting the fuel and oxidizer in the detonation tube so as to initiate detonation thereof. The detonation tube has an upstream end, a downstream end, and an axially extended portion extending from the upstream end to the downstream end and having a perimeter. The fuel-oxidizer injectors and purge air injectors may be disposed at least along the axially extended portion. The ignition may include a plurality of igniters disposed at or near the perimeter of the axially extended portion, spaced about the perimeter, at or near the upstream end of the detonation tube.
摘要:
The system and method described herein uses a hybrid pulsed detonation engine (PDE) system to drive a turbine that powers an electric generator. The combustion chamber of the PDE is shaped in a helical form, so that the external length of the section is reduced, while maintaining the distance for acceleration to detonation. This allows the achievement of deflagration to detonation transition without the help of turbulence enhancing obstacles, while keeping the overall size of the detonation tube small. The PDE output can be scaled by: increasing the cross sectional area of the detonation chamber; increasing the number of detonation tubes; and increasing the frequency of operation of the PDE. The replacement of conventional deflagrative internal combustion engines, including gas turbines and reciprocating engines, with pulsed detonation engines for electric power generation, may provide fuel savings and have a lower environmental impact.