摘要:
A method and apparatus for synthesizing a stable reference signal of a desired frequency within a spread spectrum receiver is disclosed herein. The spread spectrum receiver is designed for use in conjunction with a global positioning system (GPS) receiver, and operates to receive broadcast differential GPS correction information. The present frequency synthesis technique contemplates generating a sequence of timing signals within the GPS receiver on the basis of GPS satellite signals received thereby, and providing the timing signals to the signal receiver. Within the signal receiver, the signal cycles of a local oscillator occurring between ones of the timing signals are counted. The frequency of the local oscillator is then determined by dividing the counted cycles of the local oscillator by one of the known time intervals. The determined frequency of output signals produced by the local oscillator is then scaled so as necessary to produce the reference signal of desired frequency. This allows precisely controlled reference frequencies to be obtained irrespective of the existence of frequency instability within the local oscillator. In a preferred implementation, the stable reference signals are employed during acquisition of differential GPS correction signals received by the spread spectrum receiver. In particular, the desired reference frequency is incrementally adjusted during the process of searching for and acquiring the exact frequency of the incident differential GPS correction signals. The spread spectrum receiver is disposed to provide differential GPS correction information extracted from the acquired differential GPS correction signals to the GPS receiver.
摘要:
A global positioning system receiver includes an inbound signal terminal to receive an inbound global positioning system signal having an inbound PRN code from a global positing system signal source. A local PRN code generator is configured to generate a local PRN code. A discriminator is coupled to the inbound signal terminal and to the local PRN code generator and configured to compare the inbound signal and the local PRN code and to generate a discriminator signal containing a positive portion and a negative portion. A processor is coupled to the discriminator and configured to receive the discriminator signal to process the discriminator signal to determine a bit code and to determine a distance from the global positing system signal source based on said bit code. In one embodiment, the discriminator includes an acquisition mode configured to acquire the inbound PRN code wherein the discriminator has a first gate width and a tracking mode configured to track the PRN code wherein the discriminator has a second gate width less than the first gate width. Advantages of the invention include improved multipath signal rejection.
摘要:
A communication device includes a transmitter and receiver. The transmitter includes an M-ary encoder configured to generate an M−1 number of distinctive symbols each comprising k bits. M is equal to 2k and k is a positive integer. The transmitter also includes a code generator configured to produce spread spectrum codeword sequences based on the symbols generated by the M-ary encoder and based on a first and a second Gold code polynomials. The transmitter sends a radio signal based on the spread spectrum codeword sequences. The receiver is configured to receive the radio signal. The receiver includes a first shift register configured to receive an input signal generated based on the received radio signal and a second shift register configured to receive and circularly shift a locally generated codeword sequence that is identical to the codeword sequence used to encode the symbols.
摘要:
A communication device includes a transmitter and receiver. The transmitter includes an M-ary encoder configured to generate an M−1 number of distinctive symbols each comprising k bits. M is equal to 2k and k is a positive integer. The transmitter also includes a code generator configured to produce spread spectrum codeword sequences based on the symbols generated by the M-ary encoder and based on a first and a second Gold code polynomials. The transmitter sends a radio signal based on the spread spectrum codeword sequences. The receiver is configured to receive the radio signal. The receiver includes a first shift register configured to receive an input signal generated based on the received radio signal and a second shift register configured to receive and circularly shift a locally generated codeword sequence that is identical to the codeword sequence used to encode the symbols. The receiver also includes an accumulator coupled to the first and second shift registers and configured to multiply and accumulate stored values in the first and second shift registers each time the second shift register is circularly shifted and a selecting device coupled to the accumulator and configured to identify one symbol from the plurality of symbols based on outputs from the accumulator. A method corresponding to the device is also provided.
摘要:
A global positioning system receiver includes an inbound signal terminal to receive an inbound global positioning system signal having an inbound PRN code from a global positing system signal source. A local PRN code generator is configured to generate a local PRN code. A discriminator is coupled to the inbound signal terminal and to the local PRN code generator and configured to compare the inbound signal and the local PRN code and to generate a discriminator signal containing a positive portion and a negative portion. A processor is coupled to the discriminator and configured to receive the discriminator signal to process the discriminator signal to determine a bit code and to determine a distance from the global positing system signal source based on said bit code. In one embodiment, the discriminator includes an acquisition mode configured to acquire the inbound PRN code wherein the discriminator has a first gate width and a tracking mode configured to track the PRN code wherein the discriminator has a second gate width less than the first gate width. Advantages of the invention include improved multipath signal rejection.