摘要:
The teachings herein provide a number of advantages, including but not limited to improving soft-cell operation in service scenarios involving legacy devices that do not directly support carrier aggregation—i.e., devices that can transmit or receive in only one frequency band at a time. By imposing a Time Division Duplex (TDD) arrangement across two carriers operating in different frequency bands, scheduled transmissions involving the legacy device are mutually exclusive as between the two carriers. Advantageously, the TDD arrangement is imposed across first and second carriers used in the macro- and low-power layers of a soft-cell, thus imposing TDD-based coordination of scheduled transmissions between those carriers irrespective of whether the individual carriers are configured as Frequency Division Duplex (FDD) or TDD carriers, or a mix thereof.
摘要:
The teachings herein provide a number of advantages, including but not limited to improving soft-cell operation in service scenarios involving legacy devices that do not directly support carrier aggregation—i.e., devices that can transmit or receive in only one frequency band at a time. By imposing a Time Division Duplex (TDD) arrangement across two carriers operating in different frequency bands, scheduled transmissions involving the legacy device are mutually exclusive as between the two carriers. Advantageously, the TDD arrangement is imposed across first and second carriers used in the macro- and low-power layers of a soft-cell, thus imposing TDD-based coordination of scheduled transmissions between those carriers irrespective of whether the individual carriers are configured as Frequency Division Duplex (FDD) or TDD carriers, or a mix thereof.
摘要:
The present invention relates to scheduling of uplink and downlink resources between mobile terminals (110, 120) and a base station (130). To reduce the power leakage between the transmitter and the receiver of the mobile terminal (110), the scheduler allocates uplink frequency carriers and downlink frequency carriers with a large duplex distance to those mobile terminals (110, 120) that have to transmit with high power. This means that the requirements on the external SAW filter could be reduced.
摘要:
The present invention relates to scheduling of uplink and downlink resources between mobile terminals (110, 120) and a base station (130). To reduce the power leakage between the transmitter and the receiver of the mobile terminal (110), the scheduler allocates uplink frequency carriers and downlink frequency carriers with a large duplex distance to those mobile terminals (110, 120) that have to transmit with high power. This means that the requirements on the external SAW filter could be reduced.
摘要:
A method in a first radio communication node (110, 310, 710, 1010) and a first radio communication node (110, 310, 710, 1010) for scheduling a data transmission in a first time frame using one of a plurality of modulation and coding schemes are provided. The data transmission is to be transmitted between the first radio communication node (110, 310, 710, 1010) and a second radio communication node (120, 320, 720, 1020). The first radio communication node (110, 310, 710, 1010) obtains (301, 701, 1001, 1401) a first indication about channel quality for the first time frame. The first radio communication node (110, 310, 710, 1010) obtains (302, 702, 1002, 1402) second indication about a possible upcoming transmission failure. The possible upcoming transmission failure relates to a feedback information to be transmitted in a second time frame. The feedback information is associated with the data transmission in the first time frame. The first radio communication node (110, 310, 710, 1010) selects (303, 703, 1003, 1403) a modulation and coding scheme out of said plurality of modulation and coding schemes based on the first indication and the second indication. Next, the first radio communication node (110, 310, 710, 1010) schedules (304, 704, 1004, 1404) the data transmission using the selected modulation and coding scheme.
摘要:
A mobile terminal transmits one or more first communication channels in a first frequency region and one or more second communication channels in a second frequency region. With the channels experiencing different fading conditions, the terminal receives separate transmit power control (TPC) commands. Instead of simply adjusting the transmit power of the channels as commanded, the terminal computes a power offset indicative of the difference between the commanded power of one or more of the first channels and the commanded power of one or more of the second channels. The terminal then selectively performs transmit power control of the first and second channels on either an independent basis, according to the respective TPC commands, or a joint basis, depending on whether the computed power offset falls outside of a pre-determined range of values. In doing so, the terminal allows independent control of channels, while also mitigating self-interference and/or spectral emissions.
摘要:
A method in a first radio communication node (110, 310, 710, 1010) and a first radio communication node (110, 310, 710, 1010) for scheduling a data transmission in a first time frame using one of a plurality of modulation and coding schemes are provided. The data transmission is to be transmitted between the first radio communication node (110, 310, 710, 1010) and a second radio communication node (120, 320, 720, 1020). The first radio communication node (110, 310, 710, 1010) obtains (301, 701, 1001, 1401) a first indication about channel quality for the first time frame. The first radio communication node (110, 310, 710, 1010) obtains (302, 702, 1002, 1402) second indication about a possible upcoming transmission failure. The possible upcoming transmission failure relates to a feedback information to be transmitted in a second time frame. The feedback information is associated with the data transmission in the first time frame. The first radio communication node (110, 310, 710, 1010) selects (303, 703, 1003, 1403) a modulation and coding scheme out of said plurality of modulation and coding schemes based on the first indication and the second indication. Next, the first radio communication node (110, 310, 710, 1010) schedules (304, 704, 1004, 1404) the data transmission using the selected modulation and coding scheme.
摘要:
A mobile terminal transmits one or more first communication channels in a first frequency region and one or more second communication channels in a second frequency region. With the channels experiencing different fading conditions, the terminal receives separate transmit power control (TPC) commands. Instead of simply adjusting the transmit power of the channels as commanded, the terminal computes a power offset indicative of the difference between the commanded power of one or more of the first channels and the commanded power of one or more of the second channels. The terminal then selectively performs transmit power control of the first and second channels on either an independent basis, according to the respective TPC commands, or a joint basis, depending on whether the computed power offset falls outside of a pre-determined range of values. In doing so, the terminal allows independent control of channels, while also mitigating self-interference and/or spectral emissions.
摘要:
A terminal with transmitter and receiver operates in a multi-carrier communication system and receives at least two downlink carriers. One or more timing advance commands are received, each associated with a group of one or more uplink carriers, each group being associated with one or more of the received downlink carriers. For each downlink carrier associated with one of the groups of uplink carriers, one is selected as a reference downlink carrier; the reference downlink carrier timing is ascertained; and a transmission time period is ascertained based on the timing of the downlink reference carrier and an offset specified by the timing advance command associated with the group of uplink carriers. The transmission time period comprises a start time and a stop time. Transmission is initiated at an earliest transmission start time of the ascertained transmission time periods and is ceased at a latest ascertained stop time.
摘要:
The present invention relates to a method and apparatus for testing mobile terminals in an OFDMA system, in which all or part of available downlink radio resources in a cell are transmitted. A processing unit in a test apparatus splits the resources used for transmission into contiguous unities in the frequency domain such that one or more of said unities comprise resources allocated to one or more mobile terminals under test, and at least one of said unities comprise resources allocated to virtual users.