摘要:
A distance measuring method for performing distance measurement by projecting a distance measuring light to an object to be measured and by receiving a reflected light, comprising: a step of projecting for scanning the distance measuring light which has at least one luminous flux with a predetermined spreading angle; a step of emitting the light by pulsed light emission at least two times during a period when the luminous flux traverses the object to be measured; a step of measuring a distance by receiving the reflected light at least two times; and a step of averaging the results of the distance measurement.
摘要:
A distance measuring method for performing distance measurement by projecting a distance measuring light to an object to be measured and by receiving a reflected light, comprising: a step of projecting for scanning the distance measuring light which has at least one luminous flux with a predetermined spreading angle; a step of emitting the light by pulsed light emission at least two times during a period when the luminous flux traverses the object to be measured; a step of measuring a distance by receiving the reflected light at least two times; and a step of averaging the results of the distance measurement.
摘要:
A device for detecting optical position, comprising a photodetection unit 40 having a photodetection optical axis 37 and for outputting a photodetection signal corresponding to a light receiving position of a projected light beam, and a modulation grid 42 arranged on said photodetection optical axis and for equalizing distribution of light quantity of a received light beam, wherein a position of the light beam projected on the photodetection unit is detected based on said photodetection signal.
摘要:
A laser beam direction correcting optical system for a surveying instrument comprises a laser light source (1) for emitting a laser beam, an exit angle correcting system (17) for correcting an exit angle of the laser beam emerging therefrom in accordance with an inclination of an instrument main body so that the laser beam is oriented in a specific direction, and an incident angle correcting system provided between the laser light source (1) and the exit angle correcting system (17) to correct an incident angle of the laser beam incident upon the exit angle correcting system in accordance with the inclination of the instrument main body. The exit angle correcting system (17) comprises an objective lens (19), the objective lens (19) being constituted by a variable-focus lens in which a position of a principal plane thereof on an optical axis thereof is fixed and also which can vary a position at which an image of the laser beam is formed.
摘要:
An automatic angle compensator comprising a liquid sealing container 4 having transparent liquid to form a free liquid surface 1 sealed therein, light projecting systems 21 and 22 for projecting light at a given angle to the free liquid surface, and an optical system for guiding the light beam, which is reflected by the free liquid surface and irradiated from the liquid sealing container, whereby optical axis of the light beam reflected by the free liquid surface is aligned with optical axis of the optical system regardless of whether the free liquid surface is turned by 0.degree. or 90.degree., and automatic compensation can be achieved regardless of whether the system is positioned in horizontal or vertical directions.
摘要:
A tilt angle automatic compensator used for a device requiring verticality or horizontality is disclosed. The automatic compensator comprises a container 4 where a transparent liquid to form free liquid surface 1 is sealed, a light projection system for projecting light beam toward the free liquid surface at a predetermined angle so that it is totally reflected on the free liquid surface, and an optical system arranged at a predetermined position along optical path of the totally reflected light beam after passing through the container with sealed liquid and for equalizing change of reflection angle of optical axis corresponding to change of incident angle of optical axis in all directions. When the liquid container is tilted and incident angle of the light beam is relatively changed with respect to the free liquid surface, sensitivity varying according to the direction of change of reflection angle is optically compensated.
摘要:
A time difference measuring device can accurately measure a time difference between two pulse signals generated with a predetermined time difference by measuring the two pulse signals by one measurement. The time difference measuring device measures a time difference between a start signal (M1) and a stop signal (M2). The device has a reference signal generation unit (41) for generating two reference signals (S1, S2) having a π/2 phase difference. According to corresponding amplitude values (A11, A12) and (A21, A22) of the reference signals (S1, S2) at each generation timing of the start signal (M1) and the stop signal (M2), a phase difference detection unit (42) calculates a phase difference Δθ (=θstop−θstart) between the generation timings of the pulse signals (M1, M2). According to the detected phase difference Δθ and the cycle (Ts) of the reference signals (S1; S2), a time difference calculation unit (44) calculates the generation time difference Δt between the pulse signals (m1, M2).
摘要:
The present invention relates particularly to a laser irradiation light detecting device having detecting means for receiving a reflected light pencil of a laser light pencil applied from a laser irradiating device provided with a non-linear optical medium for generating a second harmonic. A laser light source pumps an optical resonator and a pulse driving means drives the laser light source. An irradiating means applies a pencil of pulse laser light produced from a laser oscillating device to a target device. A detecting means detects a light pencil reflected from the target device. An arithmetic processing means executes predetermined operations, based on the signal detected by the detecting means. The detecting means detects the reflected light pencil of the pulse laser light pencil in synchronism with a period T of a driving pulse of the pulse driving means.
摘要:
In measuring a certain time lag between generations of two pulse signals, a time lag measuring device prevents errors in measurement results even with an error in two reference signals for measuring the time lag. The device measures a time lag between a start signal M1 and a stop signal M2 and includes a reference signal generating section 41 generating two reference signals S1, S2 having a phase difference π/2, and an amplitude detecting section 42 detects amplitudes A11, A12 and A21, A22 of the reference signals S1, S2 at generation timings for the start signal M1 and the stop signal M2, a phase difference detecting section 43 calculating a phase _ of the reference signals S according to each set of the amplitudes (A11, A12) and (A21, A22), and a correcting section 46 correcting the calculated phase using correction data for error correction in the reference signals S1, S2.
摘要:
In measuring a certain time lag between generations of two pulse signals, a time lag measuring device prevents errors in measurement results even with an error in two reference signals for measuring the time lag. The device measures a time lag between a start signal M1 and a stop signal M2 and includes a reference signal generating section 41 generating two reference signals S1, S2 having a phase difference π/2, and an amplitude detecting section 42 detects amplitudes A11, A12 and A21, A22 of the reference signals S1, S2 at generation timings for the start signal M1 and the stop signal M2, a phase difference detecting section 43 calculating a phase _ of the reference signals S according to each set of the amplitudes (A11, A12) and (A21, A22), and a correcting section 46 correcting the calculated phase using correction data for error correction in the reference signals S1, S2.