Abstract:
When the frequency resource allocation is conveyed on a bandwidth that is different from a bandwidth on which the frequency resource allocation is sent, a receiving D2D UE needs to understand the resource allocations. A resource allocation method for device-to-device resource allocation is provided according to an example. The resource allocation method includes a first D2D user equipment (UE) receiving a downlink control information (DCI) from an access point, wherein the DCI comprises a first D2D frequency allocation and the first D2D frequency allocation comprises a first resource allocation field for transmission of data; setting a second resource allocation field of a second D2D frequency allocation of a sidelink control information (SCI) format according to the first resource allocation field; transmitting the SCI format to one or more additional D2D UEs; and transmitting the data on the resource according to the second D2D resource allocation.
Abstract:
When at least one of device-to-device UEs in connections of a group of D2D UEs is outside of the coverage area of mobile network of an access point, an information exchange mechanism established directly between the D2D UEs without involving a third party, is provided. A Sidelink Control Information (SCI) message type comprises one or more format flags indicating the respective resource allocation format, obtaining a first SCI message, adjusting a size of the first SCI message based on the determined size, and transmitting the adjusted first SCI message by a first UE in a Physical Sidelink Control Channel (PSCCH) to one or more second UEs for establishing the D2D communication link.
Abstract:
When at least one of device-to-device UEs in connections of a group of D2D UEs is outside of the coverage area of mobile network of an access point, an information exchange mechanism established directly between the D2D UEs, without involving a third party, is provided. A resource allocation method for a device-to-device (D2D) communication link between two or more D2D user equipments (UEs) in a mobile communication network is provided according to an example. The method includes a first D2D UE indicating resource allocation information for the D2D communication link in a resource allocation message, wherein the resource allocation message is mapped into a resource allocation format; wherein the resource allocation format comprises one or more format flags; wherein one or more resource allocation messages are differentiated in the resource allocation format in accordance to the one or more format flags; and the first D2D UE transmitting the resource allocation format in a Physical Sidelink Control Channel (PSCCH) to one or more additional D2D UEs.
Abstract:
A method for device-to-device (D2D) communication includes determining that a first user equipment (UE) is out-of-coverage, the first UE having been previously in-coverage on a first cell. The method also includes starting a timer upon determining that the first UE is out-of-coverage and determining whether the first UE has returned to be in-coverage after starting the timer. Additionally, the method includes determining whether the timer has expired and communicating, by the first UE directly with a second UE, using out-of-coverage resources from the first cell when the timer has not expired and the first UE has not returned to be in-coverage.
Abstract:
An apparatus and method for control channel transmission in a wireless network are disclosed. A disclosure is provided with at least one resource block (RB) including a first control channel element associated with a first antenna port (AP) and a second control channel element associated with a second AP. The first and second control channel elements might be used for transmission of a single control channel, and a first reference signal sequence associated with one of the first AP and the second AP is selected for transmission of the single control channel based on a control channel element index value, such that a resource element of the at least one RB can be detected to decode the first control channel element and the second control channel element.
Abstract:
An apparatus and method for control channel transmission in a wireless network are disclosed. A disclosure is provided with at least one resource block (RB) including a first control channel element associated with a first antenna port (AP) and a second control channel element associated with a second AP. The first and second control channel elements might be used for transmission of a single control channel, and a first reference signal sequence associated with one of the first AP and the second AP is selected for transmission of the single control channel based on a control channel element index value, such that a resource element of the at least one RB can be detected to decode the first control channel element and the second control channel element.
Abstract:
An apparatus and method for control channel transmission in a wireless network are disclosed. A disclosure is provided with at least one resource block (RB) including a first control channel element associated with a first antenna port (AP) and a second control channel element associated with a second AP. The first and second control channel elements might be used for transmission of a single control channel, and a first reference signal sequence associated with one of the first AP and the second AP is selected for transmission of the single control channel based on a control channel element index value, such that a resource element of the at least one RB can be detected to decode the first control channel element and the second control channel element.
Abstract:
An apparatus and method for control channel transmission in a wireless network are disclosed. A disclosure is provided with at least one resource block (RB) including a first control channel element associated with a first antenna port (AP) and a second control channel element associated with a second AP. The first and second control channel elements might be used for transmission of a single control channel, and a first reference signal sequence associated with one of the first AP and the second AP is selected for transmission of the single control channel based on a control channel element index value, such that a resource element of the at least one RB can be detected to decode the first control channel element and the second control channel element.
Abstract:
A system and method for transmitting control information are provided. A method for communications controller operations includes combining control data for each relay node of at least one relay node into a control channel data stream, mapping a plurality of transmission resources for the control channel data stream into a plurality of physical resource blocks using a distributed virtual resource mapping rule, and transmitting the plurality of physical resource blocks to the set of at least one relay node. The plurality of transmission resources are mapped to physical resource blocks that are non-contiguous in a frequency domain.