摘要:
System and method for measuring force-dependent gyroscopic sensitivity. A force-effect model of the effects of acceleration on the output of a gyro triad is determined. Rotation sequences are then devised to permit excitation and observation of force-effect model parameters in order to provide calibration information for these parameters. A state diagram containing the gyro triad force-effect model parameters is derived from the force-effect model, where moving from one position in the state diagram to another position indicates the gyro triad error which would occur in rotating the gyro triad according to a corresponding motion. Searching for all possible closed loop paths achievable through the state diagram, by a multiple-axes rate table with a specified number of rotations, to separate gyro triad error calibration from the accelerometer calibration. Closed loop paths having minimal lengths and exhibiting larger error sensitivity are chosen to perform error parameter calibration and reduce force-dependent gyroscopic sensitivity.
摘要:
A method of distinguishing an analog drive signal from a pickoff signal for attenuating the effect of electrical cross-coupling between the analog drive signal and the pickoff signal. The method may include receiving a periodic digital signal at a first frequency in the form of a stream of digital data values, randomly inverting at least one of the digital data values and converting the stream of digital data values to a stream of analog data values to form an analog drive signal. The method may also include driving a sensor, physically coupled to a resonant member configured to oscillate at a second frequency, using the analog drive signal and sensing changes in the movement of the resonant member detected by the sensor for producing a pickoff signal.
摘要:
A system and method for controlling the cavity length of a ring laser gyroscope to properly tune the resonant wavelengths of the ring laser gyroscope during moments when experiencing sudden shocks or high g force accelerations. The system controls the position of a movable mirror in the laser cavity of the gyroscope to control the length of the laser cavity. The system measures the acceleration experienced by the laser cavity, wherein the position of the movable mirror is adjusted to counteract the effects of the acceleration on the movable mirror in a real-time response to the measured acceleration. By adjusting the position of the movable mirror, the resonant wavelengths propagating in the ring laser gyroscope will be maintained at their desired intensity and continue to lase even after experiencing this acceleration. The system may further include a control servo-loop for providing additional cavity length control in order to maintain the desired intensity of the wavelengths propagating within the gyroscope.