Abstract:
A method for introducing a vaporous heat carrier into a liquid product, in particular a food product or beverage, and more particularly viscous products, for example desserts, sauces or concentrates, includes using the carrier to heat the product to form a germ-free product. An injector for carrying out the method is also described. A reduction in the heat transfer capacity of the injector is prevented over the entire production time. This is achieved in that three physical measurement variables which can be detected during operation of the injector are used as indicators of the formation of product deposits. At least one of said three physical measurement variables is detected, and depending on these variables, an automatically controlled axial movement of the displacement body is carried out such that the heat transfer capacity from the vaporous heat carrier into the liquid product remains the same.
Abstract:
Producing welded connections between inner tubes and tube support plates of a tube bundle for a product-to-product shell-and-tube heat exchanger by means of an auxiliary device is described. A production method includes pressing the end face of a tube support plate against the end face of the inner tubes in the direction of the inner tube longitudinal axes during welding operations with a first form fit, which is effective both radially and axially, immovably fixing the number of inner tubes corresponding to the tube layout pattern to each other by a second, detachable form fit of the auxiliary device, making a circumferential round weld orbitally, starting from the plate inner bore and the tube inner bore, in a single pass and continuously from radially inside to radially outside, and detaching and removing the auxiliary device from the welded tube bundle.
Abstract:
A metering device with a product conduit section, through which a base product forcibly flows, with at least one storage container for an additive, which is connected with an associated metering point respectively via a removal conduit, which is arranged on or respectively in the product conduit section, with a mechanism for forcibly conveying the additive, with quantity-based capturing of the base product and of the additive, with sterile steam and with a control device assigned to the metering device. The metering point is provided within a metering valve, which forms a product chamber, into which the product conduit section opens and from which it exits, an initial chamber and a partial chamber as well as a receiver of an end section and of a terminal side.
Abstract:
A method for heating a concentrate in an installation for spray drying comprises increasing a pressure of the concentrate from a low pressure level at a flow temperature to a high pressure level. The concentrate is heated at a high pressure level to a spraying temperature using a high-pressure heat exchanger. The concentrate is shear loaded using a shearing device and immediately transferring the concentrate to a location of pressurized spraying, wherein a transfer time for the immediate transfer is determined by a fluidic effective distance between the shearing device and the location of the pressurized spraying.
Abstract:
A device for heating a concentrate comprises a drying tower comprises a plurality of pressurized spray nozzles, a feed tank fluidly connected with an inlet of a low-pressure heat, a feed pump, and a high-pressure piston pump connected on an inlet side with the outlet of the low-pressure heat exchanger. A first high-pressure line section of the high-pressure line is configured to connect the outlet of the high-pressure piston pump with the inlet of the additional high-pressure heat exchanger. A second high-pressure line section of the high-pressure line is configured to connect the outlet of the additional high-pressure heat exchanger with the pressurized spray nozzles. A means for defined shear loading of the concentrate is located in an outlet-side channel and comprises an annular-shaped space.