Abstract:
A system, method, and computer-readable medium for blending a fuel for use in a gas turbine are disclosed. A measurement of a heating value of a process gas and a measurement of a molecular weight of the process gas is obtained. An estimate of a composition of the process gas is obtained using the obtained measurement of the heating value and the obtained measurement of the molecular weight. A blending ratio of the process gas and a natural gas is selected based on the estimate of the composition of the process gas. The process gas and the natural gas are then blended according to the selected blending ratio to obtain a fuel mixture for use in the gas turbine.
Abstract:
A method of detecting flame state of a combustor of a turbine engine. The method includes determining at least one of a first derivative and a second derivative of a compressor discharge pressure of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature of the exhaust gases output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of combustor dynamic pressure monitoring; and determining a flame state of a combustor of the turbine engine based on the combustor dynamic pressure monitoring, the determined derivatives of the combustion dynamics, compressor discharge pressure, gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature of the exhaust gases.
Abstract:
A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured operating parameter of the combustor.
Abstract:
A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured composition of the first fuel.
Abstract:
A method of detecting flame state of a combustor of a turbine engine. The method includes determining at least one of a first derivative and a second derivative of a compressor discharge pressure of a compressor of the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine exhaust gas temperature of the exhaust gases output by the turbine engine; determining at least one of a first derivative and a second derivative of a gas turbine shaft/rotor speed of the turbine engine; determining at least one of a first derivative and a second derivative of combustor dynamic pressure monitoring; and determining a flame state of a combustor of the turbine engine based on the combustor dynamic pressure monitoring, the determined derivatives of the combustion dynamics, compressor discharge pressure, gas turbine shaft/rotor speed, and gas turbine exhaust gas temperature of the exhaust gases.
Abstract:
This disclosure relates to systems and methods for tuning combustion dynamics in a combustor. In one embodiment of the disclosure, a method includes providing, via at least one sensor, combustion dynamics amplitude data associated with a combustor. Method may allow monitoring, by an equipment controller communicatively coupled to the at least one sensor, the combustion dynamics amplitude data. The method may allow detecting at least one change in acoustic pressure amplitude associated with combustion in the combustor. In response to detecting the change in the acoustic pressure amplitude, the method proceeds with determining a fuel split change to at least two fuel circuits configured to supply fuel to the combustor, and applying the fuel split change to the combustor.
Abstract:
A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured composition of the first fuel.
Abstract:
This disclosure relates to systems and methods for tuning combustion dynamics in a combustor. In one embodiment of the disclosure, a method includes providing, via at least one sensor, combustion dynamics amplitude data associated with a combustor. Method may allow monitoring, by an equipment controller communicatively coupled to the at least one sensor, the combustion dynamics amplitude data. The method may allow detecting at least one change in acoustic pressure amplitude associated with combustion in the combustor. In response to detecting the change in the acoustic pressure amplitude, the method proceeds with determining a fuel split change to at least two fuel circuits configured to supply fuel to the combustor, and applying the fuel split change to the combustor.
Abstract:
A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured operating parameter of the combustor.