Abstract:
The present application provides for metal rings and ceramic collars for active brazing in sodium-based thermal batteries. The metal rings may be outer and inner Ni rings configured for sealing to an alpha-alumina collar via active brazing for use in NaMx cells. The inner and outer Ni metal rings may be sealed to differing portions of the alpha-alumina collar. The portions of the outer and inner Ni rings active brazed to the alpha-alumina collar may define a tapered thickness that reduces internal stresses at the active brazed joints resulting from differing coefficients of thermal expansion between the Ni metal rings and the alpha-alumina collar. The portions of the outer and inner Ni rings and alpha-alumina collar sealed by active brazing, and thereby the active braze joints themselves, may be oriented to control or dictate the stresses on the joints during use.
Abstract:
A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a free silicon proportion, and a chemical vapor infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having essentially no free silicon proportion disposed on an outer surface of at least a portion of the substrate.
Abstract:
The present disclosure relates to ceramic matrix composites made by chemical vapor infiltration, methods of making the ceramic matrix composites, and ceramic matrix composite turbine components for use in a hot gas pathway. A method of fabricating a ceramic matrix composite is provided that can include the steps of: (i) forming a plurality of holes in a ceramic matrix composite preform of desired shape; and (ii) densifying the preform by a chemical vapor infiltration process to form a part or most of the matrix. A ceramic matrix composite is also provided that can be used in hot combustion gases made according to the aforementioned ceramic matrix composite fabrication method described herein.
Abstract:
A preform can be subject to chemical vapor infiltration (CVI) to define a ceramic matrix composite (CMC) structure, a supplemental preform can be added to the CMC structure to define an expanded structure and CVI can be performed using the expanded structure. The adding of a supplemental preform and performing CVI using the expanded structure can be repeated.
Abstract:
The present application provides for ceramic collars and metal rings for active brazing in sodium-based thermal batteries. The ceramic collar may be an alpha-alumina collar configured for active brazing, and thereby sealing, to outer and inner Ni rings for use in NaMx cells. The portions of the alpha-alumina collar active brazed to the outer and inner Ni rings may be outwardly facing and include inwardly extending recesses. The portions of the outer and inner Ni rings active brazed to the outwardly facing portions of the collar may be inwardly facing. The alpha-alumina collar may include a greater coefficient of thermal expansion than each of the outer and inner Ni rings, and the alpha-alumina collar and outer and inner Ni rings may be configured such that a portion of the outer and inner Ni rings is deformed into the inwardly extending recesses of the alpha-alumina collar after active brazing thereof.