Abstract:
An airfoil includes a leading edge, a trailing edge, a base, and a tip. The airfoil further includes a pressure side wall and a suction side wall that extend between the leading edge, the trailing edge, the base, and the tip. The airfoil further includes a plurality of passages that are defined within the airfoil and extend from an inlet at one of the base or the tip. Each passage of the plurality of passages is defined at least partially by a primary impingement wall and a solid side wall. The primary impingement wall is spaced apart from one of the pressure side wall or the suction side wall such that a primary impingement gap is defined therebetween. The primary impingement wall defines a plurality of impingement apertures that direct air in discrete jets across the impingement gap to impinge upon an interior surface of the airfoil.
Abstract:
A mask is provided for an additively manufactured part including a plurality of spaced openings in a surface of the part. The mask is made with the part and includes an attachment ligament configured to integrally couple to the part between the openings in a cantilever fashion. First and second cover members include a proximal ends integrally coupled to the attachment ligament and distal ends extending at least partially over a respective portions of the plurality of openings. A detachment member extends from each of the first and second cover members. The attachment ligament is the sole connection to the part. The mask may have an umbrella shape in cross-section.
Abstract:
A conforming coating mask is used with a turbine component having a plurality of cooling holes. The conforming coating mask includes at least two anchors; a plurality of radial mask strips integrally formed with and extending between each of the at least two anchors; and at least one coating mask securing insert. Each at least one coating mask securing insert integrally formed with a respective at least one radial mask strip; wherein the plurality of radial mask strips align with and cover the plurality of cooling holes.
Abstract:
A cooled structure of a gas turbine engine has a main body with a leading edge, a trailing edge, a first side portion, a second side portion, and a cavity. A first set of cooling air micro-channels extends from the cavity and is arranged along the first side portion. A second set of cooling air micro-channels extends from the cavity and is arranged along the second side portion. The first and second set of cooling air micro-channels have turning portions positioned adjacent each other and interwoven exhaust ends originating from each opposing side micro-channel. Each interwoven exhaust end extends around the opposing turning portion and is configured to exhaust cooling air from a plurality of exhaust ports positioned generally radially outward from the turning portions.
Abstract:
Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.
Abstract:
Systems and devices configured to seal interfaces/gaps between stationary components of turbines and manipulate a flow of coolant about portions of the turbine during turbine operation are disclosed. In one embodiment, a seal element includes: a first surface shaped to be oriented toward a pressurized cavity of the turbine; a second surface oriented substantially opposite the first surface and shaped to sealingly engage a contact surface of the static components; and a first set of angular features disposed in the second surface, the first set of angular features fluidly connecting the pressurized cavity and the flowpath of the turbine.
Abstract:
An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, wherein the plurality of circuits of cooling channels are interwoven together; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling each of the plurality of circuits of cooling channels to at least one supply of cooling fluid, wherein, in each of the plurality of circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
Abstract:
An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: at least one coolant feed channel fluidly coupled to a supply of cooling fluid; and an interconnected circuit of cooling channels, including: an interconnected circuit of cooling channels embedded within an exterior wall of the component; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling a supply of cooling fluid to the interconnected circuit of cooling channels; wherein the cooling fluid flows through the plurality of feed tubes into the interconnected circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels.
Abstract:
An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: at least one coolant feed channel fluidly coupled to a supply of cooling fluid; and an interconnected circuit of cooling channels, including: an interconnected circuit of cooling channels embedded within an exterior wall of the component; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling a supply of cooling fluid to the interconnected circuit of cooling channels; wherein the cooling fluid flows through the plurality of feed tubes into the interconnected circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels.
Abstract:
Embodiments of the present disclosure provide a cooling structure for a stationary blade, which can include: an endwall coupled to a radial end of an airfoil, relative to a rotor axis of a turbomachine; and a substantially crescent-shaped chamber positioned within the endwall and radially displaced from a trailing edge of the airfoil, the substantially crescent-shaped chamber receiving a cooling fluid from a cooling circuit, wherein the substantially crescent-shaped chamber extends from a fore section positioned proximal to one of a pressure side surface and a suction side surface of the airfoil to an aft section positioned proximal to the trailing edge of the airfoil and the other of the pressure side surface and the suction side surface of the airfoil, wherein the aft section of the substantially crescent-shaped chamber is in fluid communication with the fore section of the substantially crescent-shaped chamber.