Abstract:
An apparatus configured to reduce acoustic interactions between a propeller and a surface of an aircraft positioned downstream of the propeller includes a surface modification element of the surface of the aircraft. The surface modification element defines a modified contour of the surface. The modified contour is configured to decorrelate a phase distribution of a plurality of sound sources within a source field positioned on at least a portion of the surface.
Abstract:
A compressor is provided including a casing, a hub, a flow path, a plurality of blades, and an end-wall treatment formed in at least one of the casing and the hub, and facing a tip of each blade. The flow path is formed between the casing and the hub, and the plurality of blades is positioned in the flow path. The tip of each blade and the end-wall treatment are configured to move relative to each other. Such end-wall treatment includes a first recess portion extending along a first axis to maintain a fluid flow substantially straight through the first recess portion. The end-wall treatment further includes a plurality of second recess portions spaced apart from each other and extending from the first recess portion along a second axis different than the first axis to maintain the fluid flow substantially straight through the plurality of second recess portions.
Abstract:
An aircraft assembly includes an engine, and intake, and a propeller assembly. The engine is mounted to at least one of a wing or fuselage of an aircraft. The intake is configured to provide air to the engine. The intake includes a body having an engine inlet through which air enters the intake. The propeller assembly includes propeller blades coupled to and driven by the engine. The propeller assembly is spaced an axial distance from the inlet opening of the intake wherein air passing by the propeller blades enters the intake. The propeller assembly has a propeller configuration that is at least one of sized or shaped to optimize performance of the propeller assembly based on an interaction between the propeller assembly and the intake.
Abstract:
An aircraft assembly includes an engine, and intake, and a propeller assembly. The engine is mounted to at least one of a wing or fuselage of an aircraft. The intake is configured to provide air to the engine. The intake includes a body having an engine inlet through which air enters the intake. The propeller assembly includes propeller blades coupled to and driven by the engine. The propeller assembly is spaced an axial distance from the inlet opening of the intake wherein air passing by the propeller blades enters the intake. The propeller assembly has a propeller configuration that is at least one of sized or shaped to optimize performance of the propeller assembly based on an interaction between the propeller assembly and the intake.
Abstract:
A compressor for a gas turbine engine including one or more endwall treatments for controlling leakage flow and circumferential flow non-uniformities in the compressor. The compressor includes a casing, a hub, a flow path formed between the casing and the hub, a plurality of blades positioned in the flow path, and one or more circumferentially varying end-wall treatments formed in an interior surface of at least one of the casing or the hub. Each of the one or more circumferentially varying endwall treatments circumferentially varying based on their relative position to an immediately adjacent upstream bladerow. Each of the one or more endwall treatments is circumferentially varied in at least one of placement relative to the immediately adjacent upstream bladerow or in geometric parameters defining each of the plurality of circumferentially varying endwall treatments. Additionally disclosed is an engine including the compressor.
Abstract:
An aircraft assembly includes an engine, and intake, and a propeller assembly. The engine is mounted to at least one of a wing or fuselage of an aircraft. The intake is configured to provide air to the engine. The intake includes a body having an engine inlet through which air enters the intake. The propeller assembly includes propeller blades coupled to and driven by the engine. The propeller assembly is spaced an axial distance from the inlet opening of the intake wherein air passing by the propeller blades enters the intake. The propeller assembly has a propeller configuration that is at least one of sized or shaped to optimize performance of the propeller assembly based on an interaction between the propeller assembly and the intake.
Abstract:
An apparatus configured to reduce acoustic interactions between a propeller and a surface of an aircraft positioned downstream of the propeller includes a surface modification element of the surface of the aircraft. The surface modification element defines a modified contour of the surface. The modified contour is configured to decorrelate a phase distribution of a plurality of sound sources within a source field positioned on at least a portion of the surface.
Abstract:
A turboprop assembly includes a nacelle with a main nacelle body and a nacelle extension coupled to the main nacelle body. The nacelle extension has a wall that defines an air intake port. The air intake port has a non-circular, non-rectangular, and non-oval shaped perimeter extending in two of three dimensions.
Abstract:
An axial compressor for a gas turbine engine including one or more endwall treatments for controlling leakage flow in the compressor. The one or more endwall treatments having a height formed in an interior surface of a compressor casing or a compressor hub and configured to return a flow adjacent a plurality of rotor blade tips or a plurality of stator blade tips to a cylindrical flow passage upstream of a point of removal of the flow. Each of the endwall treatments defining a front wall, a rear wall, an outer wall extending between the front wall and the rear wall, an axial overhang, an axial overlap, an axial lean angle and a tangential lean angle. The axial overhang extending upstream to overhang at least one of the at least one set of rotor blades or the at least one set of stator blades. The axial overlap extending downstream to overlap at least one of the at least one set of rotor blades or the at least one set of stator blades.
Abstract:
An aircraft assembly includes an engine, and intake, and a propeller assembly. The engine is mounted to at least one of a wing or fuselage of an aircraft. The intake is configured to provide air to the engine. The intake includes a body having an engine inlet through which air enters the intake. The propeller assembly includes propeller blades coupled to and driven by the engine. The propeller assembly is spaced an axial distance from the inlet opening of the intake wherein air passing by the propeller blades enters the intake. The propeller assembly has a propeller configuration that is at least one of sized or shaped to optimize performance of the propeller assembly based on an interaction between the propeller assembly and the intake.