Abstract:
A system includes a gas turbine. The gas turbine includes a first compressor configured to provide a first portion of a discharge air to a combustor. The gas turbine also includes the combustor configured to combust a mixture of the first portion of the discharge air and fuel to generate an exhaust gas and to provide the exhaust gas to a turbine. The gas turbine also includes an exhaust outlet coupled to the turbine and configured to enable the exhaust gas to exit the gas turbine. The system also includes a nitrogen purification system coupled to the gas turbine. The nitrogen purification system includes a membrane nitrogen generator configured to receive a second portion of the discharge air from the compressor or a portion of the exhaust gas from the exhaust outlet, wherein the membrane nitrogen generator is configured to generate nitrogen from the second portion of the discharge air or the portion of the exhaust gas.
Abstract:
A system includes a gas turbine system, including an air intake system that includes a housing, a first plurality of air conditioning coils, a second plurality of air conditioning coils that is downstream relative to the first plurality, and a baffle extending between each of the first and second pluralities of air conditioning coils, wherein the baffle is configured to direct an air flow through the first or second pluralities of air conditioning coils in a closed position, and the baffle is configured to enable air flow to bypass the first and second pluralities of coils in an opened position.
Abstract:
The present application provides a fuel conditioning system for delivering a flow of fuel to a nozzle in a gas turbine engine. The fuel conditioning system may include a fuel compressor to increase the pressure of the flow of fuel, a pressure reduction valve to decrease the pressure of the flow of fuel, and a heater downstream of the pressure reduction valve. The pressure reduction valve may include a rotary control valve.
Abstract:
A system includes a gas turbine. The gas turbine includes a first compressor configured to provide a first portion of a discharge air to a combustor. The gas turbine also includes the combustor configured to combust a mixture of the first portion of the discharge air and fuel to generate an exhaust gas and to provide the exhaust gas to a turbine. The gas turbine also includes an exhaust outlet coupled to the turbine and configured to enable the exhaust gas to exit the gas turbine. The system also includes a nitrogen purification system coupled to the gas turbine. The nitrogen purification system includes a membrane nitrogen generator configured to receive a second portion of the discharge air from the compressor or a portion of the exhaust gas from the exhaust outlet, wherein the membrane nitrogen generator is configured to generate nitrogen from the second portion of the discharge air or the portion of the exhaust gas.
Abstract:
A gas turbine exhaust diffuser includes a frustoconical portion that defines an interior surface and an axial centerline. In particular embodiments, the interior surface may have a slope greater than 6 degrees, 10 degrees, or 20 degrees with respect to the axial centerline to define an axial cross-sectional area of at least 200 square feet, 240 square feet, or 260 square feet. In other particular embodiments, the interior surface may have an axial length of less than 25 feet or less than 10 feet. A helical turbulator on the interior surface of the frustoconical portion may reduce flow separation between exhaust gases and the interior surface to enhance recovery of potential energy from the exhaust gases.
Abstract:
A gas turbine exhaust diffuser includes a frustoconical portion that defines an interior surface and an axial centerline. In particular embodiments, the interior surface may have a slope greater than 6 degrees, 10 degrees, or 20 degrees with respect to the axial centerline to define an axial cross-sectional area of at least 200 square feet, 240 square feet, or 260 square feet. In other particular embodiments, the interior surface may have an axial length of less than 25 feet or less than 10 feet. A helical turbulator on the interior surface of the frustoconical portion may reduce flow separation between exhaust gases and the interior surface to enhance recovery of potential energy from the exhaust gases.
Abstract:
The present application provides an inlet bleed heat system for supplying a flow of bleed air to a flow of incoming air into a compressor of a gas turbine engine. The inlet bleed heat system may include an air knife and a silencer panel. The air knife may include a compressor bleed air port in communication with the flow of bleed air and a discharge gap to discharge the flow of bleed air into the flow of incoming air. The air knife may and the silencer panel may form an integrated air knife/silencer panel.
Abstract:
A method of operating a fuel heating system is provided. The method includes performing pre-ignition diagnostic checks on a plurality of components of the fuel heating system, wherein at least one inlet damper and at least one outlet damper of an exhaust flow circuit are each in a closed position. The method also includes purging the fuel heating system of unburned hydrocarbons. The method further includes operating the fuel heating system in a normal operating condition. The method yet further includes operating the fuel heating system in a cool down condition, wherein the at least one inlet damper is in the closed position.
Abstract:
A pressure sensor system for a compressor including an inlet bellmouth is disclosed. The system includes a first static pressure sensor positioned within a plane of a plenum that is upstream of the inlet bellmouth; and a second static pressure sensor positioned at an entrance plane of the compressor. A mass flow rate calculator may calculate a mass flow rate based on a pressure differential between the plane of the plenum and the entrance plane of the compressor.
Abstract:
A method for detecting hazardous gas concentration from an exhaust duct of a gas turbine enclosure includes aggregating multiple exhaust air samples collected via a first and a second plurality of sampling ports disposed within the exhaust duct to provide first and second aggregated exhaust air samples to primary and secondary sensors disposed outside of the exhaust duct. The method further includes sensing hazardous gas concentrations within the first and second aggregated exhaust air samples, where the primary and secondary sensors communicate signals that are indicative of the hazardous gas concentrations and functionality of the primary and secondary sensors to a computing device. The method further includes monitoring the hazardous gas concentrations within the first and second aggregated exhaust air samples with respect to a percentage of a lower explosive limit and monitoring the functionality of the primary and secondary sensors via the computing device.