Abstract:
A fuel heating system for a gas turbine system is provided. The system includes a boiler for generating steam, a HRSG independent of the boiler, and a single fuel heat exchanger structured to operate using steam or water as the heating medium. A control valve system selectively delivers the heating medium to the second passage of the single fuel heat exchanger as one of: the steam from the boiler and the hot feedwater from the HRSG.
Abstract:
The present application provides a fuel conditioning system for delivering a flow of fuel to a nozzle in a gas turbine engine. The fuel conditioning system may include a fuel compressor to increase the pressure of the flow of fuel, a pressure reduction valve to decrease the pressure of the flow of fuel, and a heater downstream of the pressure reduction valve. The pressure reduction valve may include a rotary control valve.
Abstract:
A system for heating combustor fuel includes a turbine exhaust plenum and a heat exchanger downstream from the turbine exhaust plenum. The heat exchanger has an exhaust inlet, an exhaust outlet, a fuel inlet, and a fuel outlet. An exhaust recirculation plenum has a recirculation inlet connection downstream from the exhaust outlet and a recirculation outlet connection upstream from the exhaust inlet. The system further includes structure for controlling a recirculated exhaust flow from the exhaust outlet into the exhaust recirculation plenum.
Abstract:
The present application provides a passive control valve actuator cooling system to provide a flow of cooling air to a control valve actuator used with a gas turbine engine. The passive control valve actuator cooling system may include a turbine enclosure with a negative pressure therein, a radiation shield with a number of radiation shield outlets and the control valve actuator positioned therein, and a cooling air line extending from outside of the turbine enclosure to the radiation shield such that the negative pressure within the turbine enclosure pulls the flow of cooling air into and through the radiation shield so as to cool the control valve actuator.
Abstract:
The present application and the resultant patent provide a gas turbine engine system. The gas turbine engine system may include a gas turbine engine, a water wash system, and a system controller. The gas turbine engine may include a compressor, a combustor in communication with the compressor, and a turbine in communication with the combustor. The water wash system may be in communication with the gas turbine engine and configured to remove contaminants therefrom. The water wash system may include a number of valves configured to control flows through the water wash system, and a number of sensors configured to measure operating parameters of the water wash system. The system controller may be in communication with the valves and the sensors and operable to automatically control the valves upon receiving operating parameter signals from the sensors in order to perform a wash of the gas turbine engine.
Abstract:
Inlet air heating systems for combined cycle power plants and combined cycle power plants including inlet air heating systems are disclosed. The inlet air heating systems may include a plurality of heating coil assemblies partially positioned within an inlet housing of a gas turbine system, and a vent valve in fluid communication with each of the heating coils. The inlet air heating system may also include a supply line in fluid communication with the heating coils to provide water to the heating coils, and a hot water line in fluid communication with the supply line and a component positioned downstream of a condenser of the combined cycle power plant. The hot water line may provide hot water from the combined cycle power plant to the supply line. Additionally, the inlet air heating system may include a drain line in fluid communication with the heating coils and the condenser.
Abstract:
The present application and the resultant patent provide a gas turbine engine system. The gas turbine engine system may include a gas turbine engine, a water wash system, and a system controller. The gas turbine engine may include a compressor, a combustor in communication with the compressor, and a turbine in communication with the combustor. The water wash system may be in communication with the gas turbine engine and configured to remove contaminants therefrom. The water wash system may include a number of valves configured to control flows through the water wash system, and a number of sensors configured to measure operating parameters of the water wash system. The system controller may be in communication with the valves and the sensors and operable to automatically control the valves upon receiving operating parameter signals from the sensors in order to perform a wash of the gas turbine engine.
Abstract:
A system for heating combustor fuel includes a turbine exhaust plenum and a heat exchanger downstream from the turbine exhaust plenum. The heat exchanger has an exhaust inlet, an exhaust outlet, a fuel inlet, and a fuel outlet. An exhaust recirculation plenum has a recirculation inlet connection downstream from the exhaust outlet and a recirculation outlet connection upstream from the exhaust inlet. The system further includes structure for controlling a recirculated exhaust flow from the exhaust outlet into the exhaust recirculation plenum.
Abstract:
The present application provides a fuel conditioning system for delivering a flow of fuel to a nozzle in a gas turbine engine. The fuel conditioning system may include a fuel compressor to increase the pressure of the flow of fuel, a pressure reduction valve to decrease the pressure of the flow of fuel, and a heater downstream of the pressure reduction valve. The pressure reduction valve may include a rotary control valve.
Abstract:
A method of operating a fuel heating system is provided. The method includes performing pre-ignition diagnostic checks on a plurality of components of the fuel heating system, wherein at least one inlet damper and at least one outlet damper of an exhaust flow circuit are each in a closed position. The method also includes purging the fuel heating system of unburned hydrocarbons. The method further includes operating the fuel heating system in a normal operating condition. The method yet further includes operating the fuel heating system in a cool down condition, wherein the at least one inlet damper is in the closed position.