Abstract:
A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system can be controlled to adjust one or more parameters of the fuel based on data received from the sensors.
Abstract:
A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
Abstract:
A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
Abstract:
An aircraft engine includes a low pressure spool, a high pressure spool, and an alternative power source. The alternative power source is configured to add power to the high pressure spool. A controller is configured to determine a noise sensitive condition; and control, in response to determining the noise sensitive condition, the alternative power source to add power to the high pressure spool.
Abstract:
A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system is provided that adjusts parameters of the fuel based on data received from the sensors.
Abstract:
Clearance control schemes for controlling a clearance defined between a first component and a second component of a gas turbine engine are provided. In one aspect, an engine controller of the gas turbine engine implements a clearance control scheme, which includes receiving data indicating a clearance between the first component and the second component, the clearance being at least one of a measured clearance captured by a sensor and a predicted clearance specific to the gas turbine engine at that point in time; comparing the clearance to an allowable clearance; determining a clearance setpoint for a clearance adjustment system based on a clearance difference determined by comparing the clearance to the allowable clearance; and causing the clearance adjustment system to adjust the clearance to the allowable clearance based on the clearance setpoint.
Abstract:
A fleet mission control system for a network of aerial vehicles including power thermal management systems is provided. According to examples of the disclosed technology a control system receives one or more mission objectives for a network of aircraft including two or more aerial vehicles. Each aerial vehicle includes a power-thermal management system. The control system receives system state information for the network of aircraft. The system state information includes PTMS state data. The control system determines a set of aircraft commands for the network of aircraft based on the one or more mission objectives and the PTMS state data, and generates an output signal based on the set of aircraft commands.
Abstract:
A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
Abstract:
A system, computer-readable medium, and a method to operate a vehicle in a manner that minimizes a cost to travel from an origin to a destination that includes finding the input to a flight control system that minimizes direct operating cost. The approach described herein employs an energy state approximation (ESA).
Abstract:
A control system for an adaptive-power thermal management system of an aircraft having at least one adaptive cycle gas turbine engine includes a real time optimization solver that utilizes a plurality of models of systems to be controlled, the plurality of models each being defined by algorithms configured to predict changes to each system caused by current changes in input to each system. The real time optimization solver is configured to solve an open-loop optimal control problem on-line at each of a plurality of sampling times, to provide a series of optimal control actions as a solution to the open-loop optimal control problem. The real time optimization solver implements a first control action in a sequence of control actions and at a next sampling time the open-loop optimal control problem is re-posed and re-solved.