Abstract:
Power converter circuitry for converting power from a power source of any one of a number of power source types, and in which arcing at relays in the event of a shutdown is avoided. A shunt circuit is provided in inrush and protection circuitry of the power converter, the circuit including a power field-effect transistor and optionally a series-connected relay. The shunt circuit is controlled to divert current from the main relay in the event of a rectifier fault, allowing the main relay to be opened under reduced or zero current. The field-effect transistor of the shunt circuit can then be safely opened, allowing its series relay to be opened under zero current conditions.
Abstract:
Power converter circuitry for converting power from a power source of any one of a number of power source types, and in which arcing at relays in the event of a shutdown is avoided. A shunt circuit is provided in inrush and protection circuitry of the power converter, the circuit including a power field-effect transistor and optionally a series-connected relay. The shunt circuit is controlled to divert current from the main relay in the event of a rectifier fault, allowing the main relay to be opened under reduced or zero current. The field-effect transistor of the shunt circuit can then be safely opened, allowing its series relay to be opened under zero current conditions.