Abstract:
Power converter circuitry for converting power from a power source of any one of a number of power source types, and in which arcing at relays in the event of a shutdown is avoided. A shunt circuit is provided in inrush and protection circuitry of the power converter, the circuit including a power field-effect transistor and optionally a series-connected relay. The shunt circuit is controlled to divert current from the main relay in the event of a rectifier fault, allowing the main relay to be opened under reduced or zero current. The field-effect transistor of the shunt circuit can then be safely opened, allowing its series relay to be opened under zero current conditions.
Abstract:
A power converter and method of operating the same for use in a power conversion system capable of receiving power from various sources, including renewable sources, for application to a load. Power type detection circuitry is provided for identifying the type of power source at the input of each power detector, based on attributes of the time-varying power received. The power converter is constructed of a boost stage followed by a galvanically isolated DC-DC converter stage. If a renewable input power source is detected, the boost stage is controlled to operate at a maximum power point, and the DC-DC converter stage is operated in an open loop manner. If the AC grid is detected as the input power source, the boost stage is controlled to attain maximum power factor, and the DC-DC converter stage is placed under feedback control of the output voltage. Operating modes are also switched in response to low load demand.
Abstract:
A power converter and a method of operating the same is described, for use in a power conversion system that is capable of receiving power from various sources, including renewable sources, for delivering power to a load. Power type detection circuitry is provided for identifying the type of power source at the input of each power detector, based on attributes of the time-varying power received. The power converter is constructed of a boost stage followed by a galvanically isolated DC-DC converter stage. If a renewable input power source is detected, the boost stage is controlled to operate at a maximum power point, and the DC-DC converter stage is operated in an open loop manner when load exceeds available power at input. The load falls below available input power, the boost stage is controlled to regulate its output voltage and DC-DC converter stage is also placed under closed loop control. If the AC grid is detected as the input power source, the boost stage is controlled to attain maximum power factor, and the DC-DC converter stage is placed under feedback control of the output voltage.