Abstract:
According to some embodiments, a synchronous reluctance machine is disclosed. The machine includes a stator; a rotor disposed within the stator and configured to rotate relative to the stator; and a sleeve disposed circumferentially around the rotor.
Abstract:
A synchronous reluctance machine includes a rotor having a first plate, a second plate, a first set of rotor poles, and a first set of axial stiffeners. Each rotor pole of the first set of rotor poles includes a first plurality of laminations axially stacked between the first plate and the second plate, and each lamination of the first plurality of laminations includes first channels configured to carry magnetic flux and a first plurality of passages spaced between the first channels. Each axial stiffener of the first set of axial stiffeners is disposed within a respective passage of the first plurality of passages. A first end of each axial stiffener of the first set of axial stiffeners interfaces with the first plate, and a second end of each axial stiffener of the first set of axial stiffeners interfaces with the second plate.
Abstract:
A switched capacitive device includes a stationary portion including a plurality of first electrodes extending at least partially in a longitudinal dimension. Each first electrode has a first substantially active electrode volume. The device also includes a translatable portion including a plurality of second electrodes proximate the plurality of first electrodes. Each second electrode has a second substantially active electrode volume. The first active electrode volume is greater than the second active electrode volume. The second electrodes are translatable with respect to the first electrodes. The second electrodes extend at least partially in the longitudinal dimension. The first electrodes are configured to induce substantially linear motion of the second electrodes in the longitudinal dimension through the use of an electric field induced by at least a portion of the first electrodes.
Abstract:
According to various embodiments, a synchronous reluctance machine is disclosed. The synchronous reluctance machine includes a stator, a synchronous reluctance rotor disposed within the stator and configured to rotate relative to the stator, and a non-magnetic sleeve disposed circumferentially around the rotor, where sleeve thickness is between about 1 mm and 2 mm and an air-gap radius is between about 80 mm and 100 mm.