摘要:
A method of controlling an electric motor assembly includes receiving sensor feedback that is based at least in part on electrical properties of a variable frequency power signal provided to the electric motor assembly. The method also includes adjusting the phase angle of the variable frequency power signal provided to the electric motor assembly based at least in part on the sensor feedback. The method also includes determining an operational status of the electric motor assembly that receives the variable frequency power signal based at least in part on the sensor feedback.
摘要:
An inspection system for inspecting a component is presented. The inspection system includes a probe unit, wherein the probe unit includes a first flux concentrator operatively coupled to a first surface of the component. Also, the probe unit includes at least one inductive coil positioned around the first flux concentrator, and configured to induce an electrical current flow in at least a portion of the component via the first flux concentrator. Further, the inspection system includes an infrared (IR) camera configured to capture a plurality of frames corresponding to the portion of the component. In addition, the inspection system includes a processing unit electrically coupled to the IR camera and configured to determine an anomaly in the component based on the captured plurality of frames.
摘要:
A switched capacitive device includes a stationary portion including first circuit boards. The device also includes a translatable portion including second circuit boards proximate to, and interdigitated with, the first circuit boards. The second circuit boards are translatable with respect to the first circuit boards. The first circuit boards induce substantially linear motion of the second circuit boards through the use of an electric field induced by the first circuit boards. The device further includes a control system including switching devices and a controller coupled to the switching devices. The switching devices are coupled to at least a portion of at least one first circuit board. The switching device is configured to intermittently energize and de-energize the first circuit board for predetermined periods of time. The controller alternatingly opens and closes the switching devices through transmitted gating commands as a function of a determined load on the switched capacitive device.
摘要:
A dielectric fluid includes a first liquid having first dielectric constant and conductivity values. The dielectric fluid also includes a second liquid having second dielectric constant and conductivity values. The first dielectric constant value is greater than the second dielectric constant value and the second electrical conductivity value is less than the first electrical conductivity value. The first and second liquids form an immiscible mixture that has third dielectric constant and conductivity values between the first and second dielectric constant values and the first and second electrical conductivity values, respectively. The first liquid forms a high conductivity phase representative of the first conductivity value, and the second liquid forms a low conductivity phase representative of the second conductivity value. The low conductivity phase is continuous the high conductivity phase is a plurality of droplets non-homogeneously dispersed within, and separated by, the continuous low conductivity phase.
摘要:
A converterless motor-driven pump system includes an off-grid prime mover, an electric power generator driven by the off-grid prime mover to generate a power output, an electric submersible pump (ESP) system, and a system controller. The ESP system includes a motor coupled to the electric power generator to receive the power output, and a pump driven by the motor to pump a fluid. The system controller includes a processor and a memory. The memory includes instructions that, when executed by the processor, cause the system controller to control the off-grid prime mover as a function of an operational parameter of the ESP system to maintain a desired operating point of the pump, and control the electric power generator to reduce the power output generated by the electric power generator while the desired operating point of the pump is maintained.
摘要:
A self-cooling electric submersible pump having an integrated cooling system is provided. The cooling system is configured to cool and lubricate the electric motor section of the pump by expanding a compressed multi-component coolant fluid through flow channels within the motor. The coolant fluid contains a first fluid having a boiling point of at least 230° C. and a second fluid having a boiling point of less than 150° C. During pump operation the first fluid acts as a largely incompressible liquid and the second fluid behaves as a compressible gas. A compressor compresses the second fluid in the presence of the first fluid to produce a hot compressed coolant fluid from which heat is transferred to a production fluid being processed by the pump. The compressed coolant fluid is expanded through an orifice and into the motor flow channels, returning thereafter to the compressor.
摘要:
A fluid extraction system is presented. The fluid extraction system includes a direct current (DC) bus and a plurality of fluid extraction sub-systems configured to be electrically coupled to the DC-bus. At least one fluid extraction sub-system includes an electric machine configured to aid in the extraction of a fluid from a well. The electric machine includes a plurality of phase windings and a rotor. The at least one fluid extraction sub-system further includes a control sub-system to control a rotational speed of the rotor by selectively controlling a supply of a phase current to the plurality of phase windings such that the rotational speed of the rotor of the electric machine is different from rotational speed of a rotor of another electric machine in at least one of other fluid extraction sub-systems. Related method for controlling rotational speeds of electric machines is also presented.
摘要:
A converterless motor-driven pump system includes an off-grid prime mover, an electric power generator driven by the off-grid prime mover to generate a power output, an electric submersible pump (ESP) system, and a system controller. The ESP system includes a motor coupled to the electric power generator to receive the power output, and a pump driven by the motor to pump a fluid. The system controller includes a processor and a memory. The memory includes instructions that, when executed by the processor, cause the system controller to control the off-grid prime mover as a function of an operational parameter of the ESP system to maintain a desired operating point of the pump, and control the electric power generator to reduce the power output generated by the electric power generator while the desired operating point of the pump is maintained.
摘要:
A heat pipe assembly includes walls having porous wick linings, an insulating layer coupled with at least one of the walls, and an interior chamber sealed by the walls. The linings hold a liquid phase of a working fluid in the interior chamber. The insulating layer is directly against a conductive component of an electromagnetic power conversion device such that heat from the conductive component vaporizes the working fluid in the porous wick lining of the at least one wall and the working fluid condenses at or within the porous wick lining of at least one other wall to cool the conductive component of the electromagnetic power conversion device. The assembly can be placed in direct contact with the device while the device is operating and/or experiencing time-varying magnetic fields that cause the device to operate.
摘要:
A heat pipe assembly includes walls having porous wick linings, an insulating layer coupled with at least one of the walls, and an interior chamber sealed by the walls. The linings hold a liquid phase of a working fluid in the interior chamber. The insulating layer is directly against a conductive component of an electromagnetic power conversion device such that heat from the conductive component vaporizes the working fluid in the porous wick lining of the at least one wall and the working fluid condenses at or within the porous wick lining of at least one other wall to cool the conductive component of the electromagnetic power conversion device. The assembly can be placed in direct contact with the device while the device is operating and/or experiencing time-varying magnetic fields that cause the device to operate.