Abstract:
A method for controlling an inverter-based resource (IBR) connected to a power grid during a grid event includes operating the IBR based on a first virtual impedance reference prior to the grid event, the first virtual impedance reference being used for determining a first virtual impedance of the IBR defining a first virtual reactance and a first virtual resistance. The method also includes receiving an indication of a start of the grid event that causes a change in the first virtual impedance reference to a second virtual impedance reference. Immediately after the change in the first virtual impedance reference, the method includes activating a soft activation module for outputting a second virtual impedance defining a second virtual reactance and a second virtual resistance that maintains a magnitude of the second virtual impedance at or above a magnitude of the second virtual impedance reference so as to reduce current in the inverter-based resource. At a certain time period after activating the soft activation module, the method includes transitioning the second virtual reactance and the second virtual resistance to a virtual reactance and a virtual resistance defined by the change.
Abstract:
A power generation system, apparatus and method to buffer power fluctuations are provided. At least one inverter (14) may be coupled to a photovoltaic power generator (10). The inverter may be subject to at least one operational constraint. A power-buffering circuitry (16) may be connected between the photovoltaic power generator and the inverter to buffer power generation fluctuations which can occur in power generated by the photovoltaic power generator, and satisfy the operational constraint of the inverter notwithstanding an occurrence of the power generation fluctuations. A controller (14) may be coupled to the power-buffering circuitry and may be responsive to the parameter of the photovoltaic power generator to perform at least one control action regarding the power fluctuations. Control actions may be performed by the controller independently of a control strategy of the inverter.
Abstract:
A method for operating an asynchronous doubly-fed wind turbine generator connected to a power grid in a grid-forming mode to emulate a virtual synchronous machine. The doubly-fed wind turbine generator includes a line-side converter coupled to a rotor-side converter via a direct current (DC) link. The method includes receiving, via a controller, at least one reference command from an external controller. The method also includes controlling rotor flux of the doubly-fed wind turbine generator using the at least one reference command. Further, the method includes providing power droop control for the doubly-fed wind turbine generator through at least one of rotor-side reference frame rotation and d-axis flux control.
Abstract:
A power generation system, apparatus and method to buffer power fluctuations are provided. At least one inverter (14) may be coupled to a photovoltaic power generator (10). The inverter may be subject to at least one operational constraint. A power-buffering circuitry (16) may be connected between the photovoltaic power generator and the inverter to buffer power generation fluctuations which can occur in power generated by the photovoltaic power generator, and satisfy the operational constraint of the inverter notwithstanding an occurrence of the power generation fluctuations. A controller (14) may be coupled to the power-buffering circuitry and may be responsive to the parameter of the photovoltaic power generator to perform at least one control action regarding the power fluctuations. Control actions may be performed by the controller independently of a control strategy of the inverter.
Abstract:
A method for controlling an inverter-based resource (IBR) connected to a power grid during a grid event includes operating the IBR based on a first virtual impedance reference prior to the grid event, the first virtual impedance reference being used for determining a first virtual impedance of the IBR defining a first virtual reactance and a first virtual resistance. The method also includes receiving an indication of a start of the grid event that causes a change in the first virtual impedance reference to a second virtual impedance reference. Immediately after the change in the first virtual impedance reference, the method includes activating a soft activation module for outputting a second virtual impedance defining a second virtual reactance and a second virtual resistance that maintains a magnitude of the second virtual impedance at or above a magnitude of the second virtual impedance reference so as to reduce current in the inverter-based resource. At a certain time period after activating the soft activation module, the method includes transitioning the second virtual reactance and the second virtual resistance to a virtual reactance and a virtual resistance defined by the change.
Abstract:
A virtual synchronous generator device disclosed. The device includes an inverter and inverter controller having a power control portion, a power reserve portion, a power point tracking control portion, and a virtual inertia control portion. The power reserve portion determines an amount of power to be reserved and sends a signal, indicative of the determined amount of power to the power point tracking controller. The power point tracking controller determines a power point that is less than a MPP, and provides a signal to the power control portion indicative of the determined power point. The inertia control portion determines a virtual inertia and provides a signal indicative of the virtual inertia to the power control portion. The power control portion provides a power control signal to the inverter based on the power point tracking signal and the inertia command signal.
Abstract:
A method for controlling a network of inverter-based resources (IBRs) during a disturbance includes, in response to a start of the disturbance, employing a system-level overload ride-through (SLORT) algorithm among the network of IBRs. The SLORT algorithm includes determining, via a SLORT control module, a modified parameter set for one or more of the IBRs using regularly-updated system-level analyses, transmitting, via the SLORT control module, the modified parameter set to the IBRs, and automatically activating, via one or more local controllers of the IBRs, the modified parameter set, wherein automatically activating the modified parameter set comprises rapidly re-parameterizing one or more parameters of the one or more of the IBRs for a duration of and for a time period after the disturbance so as to transition the network of IBRs from a pre-disturbance stable state to a post-disturbance stable state.
Abstract:
A method for controlling a network of inverter-based resources connected to a power grid during a disturbance includes employing a distributed transient virtual impedance algorithm among the network of inverter-based resources (IBRs) after a start of or in anticipation of the disturbance. The distributed transient virtual impedance algorithm includes determining, via at least one of one or more power flow equations, one or more energy function equations, and one or more estimated power capabilities, a virtual impedance control parameter and a modified power reference for one or more of the IBRs. Further, the method includes activating the virtual impedance control parameter and the modified power reference for one or more of the IBRs to ride through the disturbance in a manner that also optimizes use of the one or more estimated power capabilities for one or more of the IBRs and that preserves synchronism between at least two of the inverter-based resources and/or between at least one of the inverter-based resources and the power grid. Thus, the virtual impedance control parameter temporarily reduces voltage proportionally with output current for one or more of the IBRs, thereby resulting in a reduction of local power output of one or more of the IBRs.
Abstract:
A method for controlling a network of inverter-based resources connected to a power grid during a disturbance includes employing a distributed transient virtual impedance algorithm among the network of inverter-based resources (IBRs) after a start of or in anticipation of the disturbance. The distributed transient virtual impedance algorithm includes determining, via at least one of one or more power flow equations, one or more energy function equations, and one or more estimated power capabilities, a virtual impedance control parameter and a modified power reference for one or more of the IBRs. Further, the method includes activating the virtual impedance control parameter and the modified power reference for one or more of the IBRs to ride through the disturbance in a manner that also optimizes use of the one or more estimated power capabilities for one or more of the IBRs and that preserves synchronism between at least two of the inverter-based resources and/or between at least one of the inverter-based resources and the power grid. Thus, the virtual impedance control parameter temporarily reduces voltage proportionally with output current for one or more of the IBRs, thereby resulting in a reduction of local power output of one or more of the IBRs.
Abstract:
A method for operating an asynchronous doubly-fed wind turbine generator connected to a power grid in a grid-forming mode to emulate a virtual synchronous machine. The doubly-fed wind turbine generator includes a line-side converter coupled to a rotor-side converter via a direct current (DC) link. The method includes receiving, via a controller, at least one reference command from an external controller. The method also includes controlling rotor flux of the doubly-fed wind turbine generator using the at least one reference command. Further, the method includes providing power droop control for the doubly-fed wind turbine generator through at least one of rotor-side reference frame rotation and d-axis flux control.