Abstract:
One embodiment describes a fault tolerant transmission system that includes a programmable logic device. The programmable logic device includes a first serial port communicatively coupled to a first serial link, in which the first serial port receives a first transmission signal from the first serial link, and a second serial port communicatively coupled to a second serial link, in which the second serial port receives a second transmission signal from the second serial link. The first serial link and the second serial link are disposed in parallel with each other and communicate over a first single conduit, and the first communication signal and the second communication signal are representative of identical information. The programmable logic device further includes circuitry that detects a fault in the first serial link, the second serial link, or both by comparing the first communication signal and the second, and if a fault is detected, determines whether the transmission system can continue operation despite the fault.
Abstract:
One embodiment describes a method for real time error correction in a data transmission system that includes receiving a first communication signal on a first programmable logic device from a second programmable logic device via a first serial link, receiving a second communication signal on the first programmable logic device from the second programmable logic device via a second serial link, in which the first serial link and the second serial link are disposed in parallel with each other and are configured to communicate over a single conduit, and the first communication signal and the second communication signal are representative of identical information. The method further includes comparing the first communication signal and the second communication signal in the first programmable logic device to detect an error in data in the first communication signal, the second communication signal, or both, and when the error is detected, correcting the error in real time in the first programmable logic device based at least in part on the comparison of the first communication signal and the second communication signal.
Abstract:
A fault detection system for an over-speed protection system of a rotating machine includes a first speed sensor, second speed sensor, and third speed sensor sensing a speed of a shaft of the rotating machine. The system includes a first input configured to receive a first pulse train from the first speed sensor, a second input configured to receive a second pulse train from the second speed sensor, a third input configured to receive a third pulse train from the third speed sensor, and a processor configured to generate a shutdown signal for the rotating machine based on the first pulse train, the second pulse train, and the third pulse train.
Abstract:
One embodiment describes a fault tolerant transmission system that includes a programmable logic device. The programmable logic device includes a first serial port communicatively coupled to a first serial link, in which the first serial port receives a first transmission signal from the first serial link, and a second serial port communicatively coupled to a second serial link, in which the second serial port receives a second transmission signal from the second serial link. The first serial link and the second serial link are disposed in parallel with each other and communicate over a first single conduit, and the first communication signal and the second communication signal are representative of identical information. The programmable logic device further includes circuitry that detects a fault in the first serial link, the second serial link, or both by comparing the first communication signal and the second, and if a fault is detected, determines whether the transmission system can continue operation despite the fault.
Abstract:
A fault detection system for an over-speed protection system of a rotating machine includes a first speed sensor, second speed sensor, and third speed sensor sensing a speed of a shaft of the rotating machine. The system includes a first input configured to receive a first pulse train from the first speed sensor, a second input configured to receive a second pulse train from the second speed sensor, a third input configured to receive a third pulse train from the third speed sensor, and a processor configured to generate a shutdown signal for the rotating machine based on the first pulse train, the second pulse train, and the third pulse train.
Abstract:
One embodiment describes a method for real time error correction in a data transmission system that includes receiving a first communication signal on a first programmable logic device from a second programmable logic device via a first serial link, receiving a second communication signal on the first programmable logic device from the second programmable logic device via a second serial link, in which the first serial link and the second serial link are disposed in parallel with each other and are configured to communicate over a single conduit, and the first communication signal and the second communication signal are representative of identical information. The method further includes comparing the first communication signal and the second communication signal in the first programmable logic device to detect an error in data in the first communication signal, the second communication signal, or both, and when the error is detected, correcting the error in real time in the first programmable logic device based at least in part on the comparison of the first communication signal and the second communication signal.