Abstract:
A method and system are provided for elementally detecting variations in density. The method includes providing a computed tomography device, comprising a radiation source, a detector, and at least one grating between the radiation source and the detector, positioning the component between the radiation source and the detector, directing radiation from the radiation source to the detector to acquire information from the component, generating at least one phase contrast image and at least one dark field contrast image of the component corresponding to variations in density with the information from the component, correlating the variations in density to a foreign mass, and displaying foreign mass distribution within the component. The system includes a radiation source, a detector, a component, a first grating, a second grating, and an analysis device capable of determining total variation of density in response to radiation received by the detector, and correlating the variation of density to free element distribution in the component.
Abstract:
A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.
Abstract:
A method of forming a ceramic matrix composite (CMC) component, a CMC component and a tip member are provided. The method of form the CMC component includes providing a component preform having a first end, a second end, and a cavity, the cavity having a pre-determined shape and a first engagement surface. The method includes forming a tip member from a pre-consolidated composite material, the tip member having a second engagement surface generally conforming to the first engagement surface. The method includes directing the second engagement surface to the first engagement surface. The method includes consolidating the component preform and tip member. The ceramic matrix composite component is formed having a desired geometry and the tip member stays in place in the cavity during operation of the ceramic matrix composite component.