Abstract:
A wind blade with a self-supporting structural framework, having multiple chord-wise members and one or more span-wise members is provided. Each of the multiple chord-wise members and the one or more span-wise members have an aerodynamic contour. The wind blade also comprises a fabric skin located over the self-supporting structural framework in a tensioned state to generate an aerodynamic surface, wherein the fabric skin is attached via multiple tensioning members to both the chord wise members and span wise members.
Abstract:
A wind blade with a self-supporting structural framework, having multiple chord-wise members and one or more span-wise members is provided. Each of the multiple chord-wise members and the one or more span-wise members have an aerodynamic contour. The wind blade also comprises a fabric skin located over the self-supporting structural framework in a tensioned state to generate an aerodynamic surface, wherein the fabric skin is attached via multiple tensioning members to both the chord wise members and span wise members.
Abstract:
Compressor blades constructed of composite materials are disclosed. Some example compressor blades may include a composite blade panel including an airfoil having a span extending radially outward with respect to an axis of rotation and/or a blade attachment feature radially inward from the airfoil with respect to the axis of rotation. The blade attachment feature may be circumferentially oriented with respect to the axis of rotation. The blade attachment feature may be arranged to releasably engage a generally circumferentially oriented spool attachment feature. The spool attachment feature may be generally shaped as a circumferential dovetail slot configured to slidably receive the blade attachment feature therein.
Abstract:
A hybrid turbine blade and method of fabrication, comprising a shank portion and an airfoil portion. The airfoil portion comprising a composite outer structure having a recess formed therein and an alternating stack of at least one composite section and at least two insert sections disposed in the recess. The outer composite structure and the at least one composite section having a first density. The at least two insert sections having a second mass density, which is less than the first mass density. The composite outer structure and the alternating stack of at least one composite section and at least two insert sections together define an airfoil portion that meets all mechanical load carrying requirements of said hybrid turbine blade such that no load transfer needs to occur through said at least two insert sections.
Abstract:
A hybrid turbine blade and method of fabrication, comprising a shank portion and an airfoil portion. The airfoil portion comprising a composite outer structure having a recess formed therein and an alternating stack of at least one composite section and at least two insert sections disposed in the recess. The outer composite structure and the at least one composite section having a first density. The at least two insert sections having a second mass density, which is less than the first mass density. The composite outer structure and the alternating stack of at least one composite section and at least two insert sections together define an airfoil portion that meets all mechanical load carrying requirements of said hybrid turbine blade such that no load transfer needs to occur through said at least two insert sections.
Abstract:
A rotor blade for a wind turbine includes an internal support structure extending span-wise from a blade root to a blade tip. A plurality of ribs are fixed to and spaced along the internal support structure, with each rib extending in a generally chord-wise direction and having a generally aerodynamic blade contour. A plurality of chord-wise oriented fabric strips are affixed to the ribs in a tensioned state, wherein the fabric strips define an aerodynamic outer skin of the rotor blade.