Abstract:
A turbofan engine is provided. The turbofan engine includes a fan; a turbomachine operably coupled to the fan for driving the fan, wherein the turbomachine, the fan, or both include an engine component; a heat source; and a heat transfer system configured to reduce ice buildup or ice formation in the engine component, the heat transfer system in communication with the heat source, the heat transfer system comprising: a first heat transfer component in communication with the heat source; and a second heat transfer component that extends from the first heat transfer component to or through the engine component, wherein the first heat transfer component comprises one of a heat pipe or a graphene rod, and wherein the second heat transfer component comprises the other of the heat pipe or the graphene rod.
Abstract:
A turbofan engine is provided. The turbofan engine includes a fan; a turbomachine operably coupled to the fan for driving the fan, wherein the turbomachine, the fan, or both include an engine component; a heat source; and a heat transfer system configured to reduce ice buildup or ice formation in the engine component, the heat transfer system in communication with the heat source, the heat transfer system comprising: a first heat transfer component in communication with the heat source; and a second heat transfer component that extends from the first heat transfer component to or through the engine component, wherein the first heat transfer component comprises one of a heat pipe or a graphene rod, and wherein the second heat transfer component comprises the other of the heat pipe or the graphene rod.
Abstract:
A gas turbine engine is provided. The gas turbine engine includes a fan comprising a plurality of fan blades; a turbomachine operably coupled to the fan for driving the fan, the turbomachine comprising a compressor section, a combustion section, and a turbine section in serial flow order and together defining a core air flowpath; and one or more graphene layers coupled to, or integrated into, a portion of the gas turbine engine, wherein the one or more graphene layers are configured to reduce ice buildup or ice formation. The one or more graphene layers include graphene or an allotrope thereof.
Abstract:
A system for extracting foreign matter in a gas turbine is provided. The system includes a variable bleed valve (VBV) disposed between a booster and a high pressure compressor configured to bleed at least a first flow from a core engine flow path into a bypass flow path to extract foreign particles. The system also includes a wedge structure disposed in the core engine flowpath proximate to the variable bleed valve and configured to allow the at least first flow into the bypass flow path through an extraction passage or at least a second flow through a recovery passage into the core engine flow path.