Abstract:
A method of operating a combustor of a turbomachine on a total fuel input that contains a concentration of hydrogen that is greater than about 80% is provided. The method includes injecting a first mixture of air and a first fuel containing a first amount of hydrogen into the primary combustion zone of the combustor to generate a first flow of combustion gases having a first temperature. The method further includes injecting, with one or more premix injectors disposed downstream of the fuel nozzles, a second mixture of air and a second fuel containing a second amount of hydrogen into the secondary combustion zone of the combustor to generate a second flow of combustion gases having a second temperature. The method further includes separately injecting a third fuel into secondary combustion zone to generate a third flow of combustion gases having a third temperature.
Abstract:
Combustors, gas turbines, and associated methods of operation are provided. A method for operating a combustor includes firing a bundled tube fuel nozzle assembly within a combustion liner of the combustor to generate combustion gases at a first temperature within a first combustion zone length. The method further includes firing a fuel injector downstream from the bundled tube fuel nozzle assembly within the combustion liner of the combustor to generate combustion gases at a second temperature within a second combustion zone length. The first combustion zone length is less than the second combustion zone length. The combustion gases travel through the first combustion zone length in a first time period and through the second combustion zone length in a second time period. The second time period is less than the first time period.
Abstract:
The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.
Abstract:
A system includes an oxidant compressor and a gas turbine engine turbine, which includes a turbine combustor, a turbine, and an exhaust gas compressor. The turbine combustor includes a plurality of diffusion fuel nozzles, each including a first oxidant conduit configured to inject a first oxidant through a plurality of first oxidant openings configured to impart swirling motion to the first oxidant in a first rotational direction, a first fuel conduit configured to inject a first fuel through a plurality of first fuel openings configured to impart swirling motion to the first fuel in a second rotational direction, and a second oxidant conduit configured to inject a second oxidant through a plurality of second oxidant openings configured to impart swirling motion to the second oxidant in a third rotational direction. The first fuel conduit surrounds the first oxidant conduit and the second oxidant conduit surrounds the first fuel conduit.
Abstract:
The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.
Abstract:
A method of operating a combustor of a turbomachine on a total fuel input that contains a concentration of hydrogen that is greater than about 80% is provided. The method includes injecting a first mixture of air and a first fuel containing a first amount of hydrogen into the primary combustion zone of the combustor to generate a first flow of combustion gases having a first temperature. The method further includes injecting, with one or more premix injectors disposed downstream of the fuel nozzles, a second mixture of air and a second fuel containing a second amount of hydrogen into the secondary combustion zone of the combustor to generate a second flow of combustion gases having a second temperature. The method further includes separately injecting a third fuel into secondary combustion zone to generate a third flow of combustion gases having a third temperature.
Abstract:
A method of operating a combustor of a turbomachine on a total fuel input that contains a concentration of hydrogen that is greater than about 80% is provided. The method includes injecting a first mixture of air and a first fuel containing a first amount of hydrogen into the primary combustion zone of the combustor to generate a first flow of combustion gases having a first temperature. The method further includes injecting, with one or more premix injectors disposed downstream of the fuel nozzles, a second mixture of air and a second fuel containing a second amount of hydrogen into the secondary combustion zone of the combustor to generate a second flow of combustion gases having a second temperature. The method further includes separately injecting a third fuel into secondary combustion zone to generate a third flow of combustion gases having a third temperature.
Abstract:
The present disclosure generally relates to a system with a gas turbine engine including a first combustor and a second combustor. The first combustor includes a first end cover with a first geometry and the second combustor includes a second end cover with a second geometry. The first geometry has one or more geometric differences relative to the second geometry.
Abstract:
The present disclosure generally relates to a system with a gas turbine engine including a first combustor and a second combustor. The first combustor includes a first end cover with a first geometry and the second combustor includes a second end cover with a second geometry. The first geometry has one or more geometric differences relative to the second geometry.
Abstract:
The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.