摘要:
An imaging lens includes first to sixth lens elements having refractive power and arranged in order from an object side to an image side along an optical axis of the imaging lens. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
摘要:
An imaging lens includes an aperture stop and first to sixth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
摘要:
Present embodiments provide for an optical imaging lens. The optical imaging lens may comprise five lens elements positioned sequentially from an object side to an image side. By controlling the convex or concave shape of the surfaces of the lens elements and designing parameters satisfying at least one inequality, the view angle of the optical imaging lens may be increased to achieve better optical characteristics.
摘要:
An imaging lens includes first to sixth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
摘要:
An imaging lens includes first to sixth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant lens parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
摘要:
The present invention provides a mobile device and an optical imaging lens thereof. The optical imaging lens comprises an aperture stop, first, second, third and fourth lens elements positioned sequentially from an object side to an image side. The first lens element with positive refracting power has a surface facing toward the object side. The second lens element with negative refracting power has a convex surface facing toward the object. The third lens element has a positive refracting power. The fourth lens element has a surface facing toward the object side with a concave portion in the vicinity of the optical axis and a surface facing toward the image side with a convex portion in the peripheral vicinity. The optical imaging lens of the present invention is capable of shortening the total length of the optical imaging lens efficiently and has good optical characteristics.
摘要:
An imaging lens includes first to sixth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
摘要:
An imaging lens includes an aperture stop and first to sixth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
摘要:
Present embodiments provide for a mobile device and an optical imaging lens thereof. The optical imaging lens may comprise an aperture stop and six lens elements positioned sequentially from an object side to an image side. Through controlling the convex or concave shape of the surfaces of the lens elements and designing parameters satisfying several equations, the optical imaging lens may show desirable optical characteristics and the total length of the optical imaging lens may be shortened.
摘要:
Present embodiments provide for a mobile device and an optical imaging lens thereof. The optical imaging lens comprises four lens elements positioned in an order from the object side to the image side. Through controlling the convex or concave shape of the surfaces of the lens elements, the thickness of the at least one lens element, an air gap between two lens elements, and a sum of all air gaps between all four lens elements along the optical axis satisfying the relations: (T3/G34)>4 and (Gaa/T3)>1, wherein T3 is the thickness of the third lens element, G34 is the air gap between the third lens element and the fourth lens element, and Gaa is the sum of all air gaps between all four lens elements, the optical imaging lens shows better optical characteristics and the total length of the optical imaging lens is shortened.