Abstract:
An electro-optic element having enhanced durability by the addition of an additive. The additive may enhance the durability of the electro-optic element by reducing or eliminating the effects of water on species with the electro-optic element, such as the electrolyte. Specifically, the additive may operate to reduce or eliminate the formation and/or accumulation of hydrogen fluoride within the electro-optic element by interaction of the electrolyte with water or alcohol molecules. In some embodiments, the additive may be an organosilicon species, such as (3-cyanopropyl) dimethylfluorosilane.
Abstract:
An electro-optic element includes a first electroactive compartment including an electroactive film having a first electroactive component and a second electroactive compartment including an electroactive solution or gel having a second electroactive component. An ion selective material is disposed between the first and second electroactive compartments and is configured to inhibit diffusion of the second electroactive component in an activated state from the second electroactive compartment to the first electroactive compartment. At least one of the first and second electroactive components is electrochromic such that the electro-optic element is configured to reversibly attenuate transmittance of light having a wavelength within a predetermined wavelength range when an electrical potential is applied to the electro-optic element.
Abstract:
An electro-optic device may comprise a first substrate having a first surface and a second surface; a second substrate having a third surface and a fourth surface, the second substrate disposed in a spaced-apart relationship relative to the first substrate such that the second and third surfaces are generally parallel to and face one another; a first electrode associated with the second surface; a second electrode associated with the third surface; a styrene-ethylene-butylene-styrene (SEBS) anionic exchange membrane disposed between the first and second electrodes; a first compartment defined by the SEBS anionic exchange membrane and the first substrate; a second compartment defined by the SEBS anionic exchange membrane and the second substrate; a cathodic species disposed in the first compartment; and an anodic species disposed in the second compartment.
Abstract:
An optical assembly is provided that includes an electro-optic element that is configured to transition between a substantially clear state and a substantially darkened state. The electro-optic element can include an electrochromic polymer or network film that is substantially aligned with light having a predetermined polarization such that the electro-optic element is variably transmissive to the polarized light.
Abstract:
A low dimerizing electrochromic compound for use in electrochromic mediums and electro-optic elements incorporating said electrochromic mediums is provided. The low dimerizing electrochromic compound is represented by Formula (I): wherein each R1 is individually an alkyl, a hydroxyalkyl, or an alkyl substituted with at least one polymerizable functional group; each R2 is a hydrogen; each R3 is individually a hydrogen or an alkyl; and each R4 is individually a hydrogen, an alkyl, or a hydroxyalkyl; and X− is an anion.
Abstract:
An electro-optic device includes a first substrate having a first surface and a second surface, the first and second surfaces are substantially parallel to one another; a second substrate having a third surface and a fourth surface, the third and fourth surfaces are substantially parallel to one another; a sealing member; and an electrochromic medium; wherein the first and second substrates are substantially parallel to one another; the sealing member is positioned between the first substrate and second substrate to define a chamber containing the electrochromic medium; the second surface and the third surface are proximate to one another; the second surface includes a conductive layer; the third surface includes an optional second conductive layer; an active cathode region is present in one or more of the first conductive layer and the optional second conductive layer; an active anode region is present in one or more of the first conductive layer and the optional second conductive layer; and (1) the active anode region is at least partially not occluded by the active cathode region when the chamber is viewed from any vantage point perpendicular to the second surface; or (2) the active cathode region is at least partially not occluded by the active anode region when the chamber is viewed from any vantage point perpendicular to the second surface.
Abstract:
An emissive display system includes an electro-optic device having a first substantially transparent substrate including a first electrically conductive material associated therewith. A second substantially transparent substrate is spaced apart from the first substrate to define a cavity and includes a second electrically conductive material associated therewith. One or more spacing members are positioned within the cavity and include one or more polymer matrix discs configured to maintain a cell spacing between the first and second substrates. An electro-optic medium is disposed within the cavity and is variably transmissive such that the electro-optic device is operable between substantially clear and darkened states, and includes at least one solvent, at least one anodic material, and at least one cathodic material. A substantially transparent light emitting display is operably coupled to the electro-optic device, which is in the darkened state when the light emitting display is emitting light.
Abstract:
An electro-optic (EO) display includes one or more adjustable-intensity color filters; a transparent backlight; and a transflective layer positioned between the adjustable-intensity color filter(s) and the transparent backlight, wherein the transflective layer reflects light off of one surface of the transflective layer and allows light through another surface of the transflective layer.
Abstract:
An electrochromic device including: a first substantially transparent substrate having an electrically conductive material associated therewith; a second substrate having an electrically conductive material associated therewith; an electrochromic medium contained within a chamber positioned between the first and second substrates which includes: at least one solvent; at least one anodic material; and at least one cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic; wherein at least one of a seal member, the first substrate, the second substrate, and the chamber includes a plug associated with a fill port; and wherein the plug is at least partially cured with at least one photoinitiator and at least one photosensitizer upon exposure to electromagnetic radiation having a wavelength from about 350 nm to about 420 nm.
Abstract:
An emissive display system includes an electro-optic device having a first substantially transparent substrate including a first electrically conductive material associated therewith. A second substantially transparent substrate is spaced apart from the first substrate to define a cavity and includes a second electrically conductive material associated therewith. One or more spacing members are positioned within the cavity and include one or more polymer matrix discs configured to maintain a cell spacing between the first and second substrates. An electro-optic medium is disposed within the cavity and is variably transmissive such that the electro-optic device is operable between substantially clear and darkened states, and includes at least one solvent, at least one anodic material, and at least one cathodic material. A substantially transparent light emitting display is operably coupled to the electro-optic device, which is in the darkened state when the light emitting display is emitting light.