Abstract:
According to one aspect of the present disclosure, a display apparatus for a vehicle is disclosed. The apparatus comprises a display panel retained in a housing and configured to display image data on a display surface in a display direction. The apparatus further comprises a focal distance correction feature disposed in front of the display surface in the display direction. The focal distance correction feature is configured to project the image data at a projected distance behind the display surface relative to the display direction such that the image data appears to originate from behind the display surface.
Abstract:
A display mirror assembly for a vehicle includes a partially reflective, partially transmissive element; and a full display module mounted behind the partially reflective, partially transmissive element, the display module having an optic block, and a display in optical communication with the optic block, the display being one an in-place switching liquid crystal display, a fringe filed switching liquid crystal display, and a vertically aligned liquid crystal display.
Abstract:
An electro-optic system is provided that includes a front element having first and second surfaces, a rear element including third and fourth surfaces, wherein the front and rear elements are sealably bonded together in a spaced-apart relationship to define a chamber, and an electro-optic medium contained in the chamber, and the electro-optic medium is adapted to be in at least a high transmittance state and a low transmittance state. The electro-optic system further includes a display device in optical communication with the electro-optic element, the display device including at least one light source and is configured to emit at least a first primary and a second primary, the first and second primaries each having a first hue (hab) when viewed through the electro-optic element in approximately the high transmittance state and a second hue (hab′) when viewed through the electro-optic element in approximately the low transmittance state, wherein a change in the first and second hues (Δhab) for both first and second primaries is less than approximately 31 degrees.
Abstract:
An electro-optic system is provided that includes a front element having first and second surfaces, a rear element including third and fourth surfaces, wherein the front and rear elements are sealably bonded together in a spaced-apart relationship to define a chamber, and an electro-optic medium contained in the chamber, and the electro-optic medium is adapted to be in at least a high transmittance state and a low transmittance state. The electro-optic system further includes a display device in optical communication with the electro-optic element, the display device including at least one light source and is configured to emit at least a first primary and a second primary, the first and second primaries each having a first hue (hab) when viewed through the electro-optic element in approximately the high transmittance state and a second hue (hab′) when viewed through the electro-optic element in approximately the low transmittance state, wherein a change in the first and second hues (Δhab) for both first and second primaries is less than approximately 31 degrees.
Abstract:
An electro-optic system is provided that includes a front element having first and second surfaces, a rear element including third and fourth surfaces, wherein the front and rear elements are sealably bonded together in a spaced-apart relationship to define a chamber, and an electro-optic medium contained in the chamber, and the electro-optic medium is adapted to be in at least a high transmittance state and a low transmittance state. The electro-optic system further includes a display device in optical communication with the electro-optic element, the display device including at least one light source and is configured to emit at least a first primary and a second primary, the first and second primaries each having a first hue (hab) when viewed through the electro-optic element in approximately the high transmittance state and a second hue (hab′) when viewed through the electro-optic element in approximately the low transmittance state, wherein a change in the first and second hues (Δhab) for both first and second primaries is less than approximately 31 degrees.
Abstract:
A backlight assembly for a display having a polarized transmission axis is provided including a light source for emitting light; a first brightness enhancement film having a plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from the light source; and a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the first brightness enhancement film, wherein the first direction extends at an angle of between about 5 degrees and about 15 degrees offset from the polarized transmission axis of the display and the second direction is substantially perpendicular to the first direction.
Abstract:
An electro-optic (EO) display includes one or more adjustable-intensity color filters; a transparent backlight; and a transflective layer positioned between the adjustable-intensity color filter(s) and the transparent backlight, wherein the transflective layer reflects light off of one surface of the transflective layer and allows light through another surface of the transflective layer.
Abstract:
A display mirror assembly for a vehicle includes an electrochromic cell, a switchable reflective element, a display module, an ambient light sensor, and a controller. The controller automatically selects a display mode or a mirror mode in response to a detected ambient light level. In a display mode, the controller activates the display module, sets the switchable reflective element to a low reflection mode, and sets the electrochromic cell to a clear state with minimum attenuation. In a mirror mode, the controller deactivates the display module, sets the switchable reflective element to a high reflection mode, and varies attenuation by the electrochromic cell.
Abstract:
A display mirror assembly for a vehicle includes a partially reflective, partially transmissive element; and a full display module mounted behind the partially reflective, partially transmissive element, the display module having an optic block, and a display in optical communication with the optic block, the display being one an in-place switching liquid crystal display, a fringe filed switching liquid crystal display, and a vertically aligned liquid crystal display.
Abstract:
A rearview device system includes a partially reflective, partially transmissive element, a display module in optical communication with the partially reflective, partially transmissive element, a display element, an optic block in optical communication with the display element, a first circuit board comprising at least one light source configured to emit illumination that propagates through the optic block and edge light the display element, an optic holder operably connected to the optic block, defining at least one aperture, a second circuit board comprising at least one light source configured to emit illumination that propagates through the at least one aperture and the optic block to back light at least one of a portion of the display element and an icon, and wherein light emitted by the light source of the first circuit board and the light source of the second circuit board is visible through the partially reflective, partially transmissive element.