Abstract:
A vehicle system includes an electric motor, an internal combustion engine, and a heating system configured to transfer heat from the internal combustion engine to a passenger compartment of the vehicle. The system includes a controller configured to operate the electric motor and the internal combustion engine according to one of a plurality of drive cycle profiles. The controller selects the drive cycle profile based on an ambient temperature. The drive cycle profiles include a first drive cycle profile that commands power from the electric motor until the battery system reaches a predetermined state of charge and subsequently commands power from the internal combustion engine and a second drive cycle profile that commands power from the internal combustion engine and subsequently commands power from the electric motor.
Abstract:
A system for, and method of, providing e-assist on a route. A determination may be made of whether terrain data for the route is available. A rider effort level may be determined. The terrain data may be read when available. Whether a change in slope has occurred, or is anticipated to occur, corresponding to a need for an additional input to the rider effort level may be determined. The e-assist level may be adjusted to provide a level that offsets the need for the additional input, or the rider may be informed to provide an increased effort level.
Abstract:
Systems and methods are provided to allow for reliable consumption of GPS and Map information into a Control System, for such uses as improving off cycle fuel economy in a plug in hybrid vehicle with an electric motor, and an internal combustion engine using a global position system (GPS) is provided. The system comprises a global position system (GPS), a clock, and a processor containing a function executing therein that controls the internal combustion engine based on a GPS fix and its Accuracy Information (VDOP/HDOP/Satellite Quantity).