Abstract:
A method of measuring exhaust gas temperatures in an exhaust pipe of an internal combustion engine is disclosed. A value of a mass flow rate of exhaust gasses flowing into the exhaust pipe is determined. A signal yielded by a temperature sensor located in a first point of the exhaust pipe is sampled and applied as input to a first computational module that yields a corresponding first output signal. A value of the temperature of the exhaust gasses flowing in the first point of the exhaust pipe is calculated on the basis of a value of the first output signal.
Abstract:
A computer program, system and method are provided for thermally regulating an injector injecting a reducing agent into an exhaust pipe of an internal combustion engine. A pump is activated to deliver a coolant in a coolant circuit having a portion in heat exchange relation with the injector. A value is determined for a mass flow rate of the coolant delivered by the pump. A value is calculated for a temperature of the injector as a function of the determined value of the mass flow rate. A difference is calculated between the calculated value of the injector temperature and a predetermined set-point value thereof, and the mass flow rate of the coolant delivered by the pump is adjusted on the basis of the calculated difference.