Abstract:
A bipolar plate used in a fuel cell and a method of making a bipolar plate. The sheet is made generally from a stainless steel, and in a more preferable form from a ferritic stainless steel. In one configuration, a stamping or related metal forming tool operation will introduce a negative clearance as a way to move or otherwise reallocate a portion of the material making up the sheet into other portions as a way to reduce stretching, necking, thinning and related thickness deviations associated with the bends formed in the bipolar plate.
Abstract:
A bipolar plate used in a fuel cell and a method of making a bipolar plate. The sheet is made generally from a stainless steel, and in a more preferable form from a ferritic stainless steel. In one configuration, a stamping or related metal forming tool operation will introduce a negative clearance as a way to move or otherwise reallocate a portion of the material making up the sheet into other portions as a way to reduce stretching, necking, thinning and related thickness deviations associated with the bends formed in the bipolar plate.
Abstract:
A plate includes a working face and a header portion. The working face defines a plurality of reactant channels thereon. The header portion is disposed in a peripheral area of the plate and includes a plurality of flanges and a plurality of beads. The flanges are disposed on the header portion and define a plurality of apertures through the plate. Each flange defines a respective one of the apertures. At least one of the apertures is fluidly connected to the reactant channels. The plurality of beads is disposed on the working face. Each bead is disposed about a respective one of the apertures and thereby defines a respective one of the flanges. Each bead defines a shape consisting of bead-corners and bead-sides. Each bead has a sealing surface thereon. The sealing surface is configured to deflect when exposed to a contact pressure to thereby provide a substantially fluid-tight seal.
Abstract:
A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.
Abstract:
A plate includes a working face and a header portion. The working face defines a plurality of reactant channels thereon. The header portion is disposed in a peripheral area of the plate and includes a plurality of flanges and a plurality of beads. The flanges are disposed on the header portion and define a plurality of apertures through the plate. Each flange defines a respective one of the apertures. At least one of the apertures is fluidly connected to the reactant channels. The plurality of beads is disposed on the working face. Each bead is disposed about a respective one of the apertures and thereby defines a respective one of the flanges. Each bead defines a shape consisting of bead-corners and bead-sides. Each bead has a sealing surface thereon. The sealing surface is configured to deflect when exposed to a contact pressure to thereby provide a substantially fluid-tight seal.