Abstract:
Methods and systems for identification of slave elements and/or cells in a communication system within a vehicle. In some implementations, such methods may comprise measuring a first voltage of a first slave device of a plurality of slave devices within the communication system, and measuring a second voltage of a second slave device of the plurality of slave devices within the communication system. A location of at least the first and second slave devices, which may be linked with respective cells, such as battery cells or fuel cells, may then be identified by comparing at least the first voltage with the second voltage.
Abstract:
An integrated environmental barrier for protecting the receiver portion of a fuel cell stack health monitoring system. The stack health monitoring system includes a transmitting measurement module and an optical communication module having a receiver. Measurements indicating the health of the fuel cell stack are optically communicated between the transmitter and receiver through the environmentally protective barrier. The environmentally protective barrier is disposed between the measurement module and the optical communication module such that the environmental barrier isolates the optical communication module from the environment contained within the fuel cell stack. The environmental barrier comprises light blocking and light transmitting portions enabling system variation while ensuring signal integrity.
Abstract:
An integrated environmental barrier for protecting the receiver portion of a fuel cell stack health monitoring system. The stack health monitoring system includes a transmitting measurement module and an optical communication module having a receiver. Measurements indicating the health of the fuel cell stack are optically communicated between the transmitter and receiver through the environmentally protective barrier. The environmentally protective barrier is disposed between the measurement module and the optical communication module such that the environmental barrier isolates the optical communication module from the environment contained within the fuel cell stack. The environmental barrier comprises light blocking and light transmitting portions enabling system variation while ensuring signal integrity.
Abstract:
A fuel cell charging system includes a fuel cell stack having a first operating direct current (DC) voltage between fuel check stack terminals, a high voltage system operating at a first DC operating voltage different than and generally higher than the first operating voltage of the fuel cell stack, a boost converter in electrical connection with the fuel cell stack and the high voltage system, and a stack charging component that applies a second DC operating voltage, generally of lower value than that of the first normal operating voltage, to the fuel cell stack. The boost converter transfer electrical power from the fuel cell stack to the high voltage system during fuel cell operation. Characteristically, the second DC operating voltage applied to the fuel cell stack terminals is typically lower in value than that of the first DC operating voltage of both the fuel cell stack and the HV electrical system and is stepped down from the first DC operating voltage of the HV electrical system.
Abstract:
System and methods for detecting anode contamination in a fuel cell system are presented. In certain embodiments, a high frequency resistance response of a fuel cell system may be measured at a plurality of frequencies. In some embodiments, the rate of change of high frequency resistance response over time may differ at varied frequencies based on an amount of anode contamination in the fuel cell system. Accordingly, systems and methods disclosed herein may compare high frequency resistance responses taken at a plurality of measured frequencies to detect anode contamination and initiate associated recovery procedures in the fuel cell system.
Abstract:
System and methods for measuring operating parameters of a fuel cell system are presented. In certain embodiments, the systems and methods may be configured to measure a high frequency resistance of a fuel cell system. A method for measuring a high frequency resistance of a fuel cell system may include inducing a current signal and a voltage signal through the FC system at a center frequency using a switched load. The current signal and the voltage signal may then be measured and filtered to isolate the current signal and the voltage signal from noise signals occurring in the FC system. A high frequency resistance of the FC may then be calculated based on the filtered current and voltage signals.