Abstract:
A stator assembly includes a plurality of stator slots defining multiple slot layers. The assembly includes a plurality of hairpins each having a respective first leg positioned in one of the multiple slot layers and a respective second leg positioned in another of the multiple slot layers. Each hairpin is configured to allow a current to flow from the respective first leg to the respective second leg. The plurality of hairpins is divided into multiple hairpin layers. The hairpins form multiple winding sets, such as first, second, third and fourth winding sets. Each of the winding sets at least partially includes the hairpins from at least two of the multiple hairpin layers. The multiple slot layers may include six slot layers. The multiple hairpin layers may include six hairpin layers. Thus, at least one of the hairpin layers may be “shared” by two winding sets.
Abstract:
An apparatus or assembly for forming injection molded magnets in permanent magnet rotors or laminations for such rotors. The assembly includes a plurality of platens defining an axial boundary of a die cavity and a plurality of support shoes that are radially moveable between a closed position defining a radial boundary of the die cavity, and an open position creating a gap between the rotor core and the plurality of support shoes. The assembly has an injection system for filling at least one of the plurality of voids of the rotor core with a magnetic slurry, and a plurality of alignment magnets configured to magnetically align the magnetic slurry.
Abstract:
An electric machine assembly includes an electric machine having a stator and a rotor. The stator has stator windings at a stator winding temperature (tS) and the rotor is configured to rotate at a rotor speed (ω). A controller is operatively connected to the electric machine and has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining stator winding resistance. The controller is configured to determine a high-speed resistance factor (rH) which is based at least partially on the torque command (T*), the stator winding temperature (tS), the rotor speed (ω), a characterized torque error and the number of pole pairs (P). The controller may determine a total resistance value (R) based on a weighting factor (k), the high-speed resistance factor (rH) and the low-speed resistance factor (rL).
Abstract:
An interior permanent magnet machine includes a rotor having a central axis and a plurality of axial segments. The axial segments include a first axial segment and a second axial segment positioned adjacent to each other in an axial direction. Each of the axially-spaced segments includes at least one pole defining a respective angular configuration characterized by respective first, second and third angles. The first axial segment defines a first set of angular configurations and the second axial segment defines a second set of angular configurations. The rotor is configured to have an axially asymmetric configuration such that the first set of angular configurations is different from the second set of angular configurations.
Abstract:
A rotor core for an internal permanent magnet machine includes at least one ferrite pole and at least one rare earth pole, arranged radially about an axis in alternating relationship. The ferrite poles define a plurality of first pole cavities, and the rare earth poles define a plurality of second pole cavities. One of a plurality of ferrite magnets is disposed within each of the first pole cavities of the ferrite poles, and one of a plurality of rare earth magnets is disposed within each of the second pole cavities of the rare earth poles.
Abstract:
An interior permanent magnet machine includes a rotor having a plurality of slots. First and second slots are disposed in a first pole and the third and fourth slots are disposed in a second pole. A first angle is defined between respective centerlines of the first and second slots. A second angle is defined between respective centerlines of the third and fourth slots. The first angle is configured to be sufficiently different from the second angle so that torque ripple is reduced. Thus the rotor is configured such that the angular configuration of slots in a first pole is different from the angular configuration of slots in a second pole of the rotor.
Abstract:
A stator assembly includes a plurality of stator slots defining a plurality of slot layers. The assembly includes a plurality of hairpins each having respective first and second legs positioned in respective ones of the slot layers. Each of the hairpins is one of a short-pitched coil, a long-pitched coil and a full-pitched coil. The short-pitched, long-pitched and full-pitched coils are configured to extend over a first, second and third number of the stator slots, respectively. The hairpins may be divided into first, second, third, fourth, fifth and sixth hairpin layers. One of the hairpin layers includes at least one short-pitched coil, and another of the hairpin layers includes at least one long-pitched coil. The first, third and fifth hairpin layers each may include at least two short-pitched coils while the second, fourth and sixth hairpin layers each may include at least two long-pitched coils.
Abstract:
A stator assembly includes a plurality of stator slots defining a plurality of slot layers. The assembly includes a plurality of hairpins each having respective first and second legs positioned in respective ones of the slot layers. Each of the hairpins is one of a short-pitched coil, a long-pitched coil and a full-pitched coil. The short-pitched, long-pitched and full-pitched coils are configured to extend over a first, second and third number of the stator slots, respectively. The hairpins may be divided into first, second, third, fourth, fifth and sixth hairpin layers. One of the hairpin layers includes at least one short-pitched coil, and another of the hairpin layers includes at least one long-pitched coil. The first, third and fifth hairpin layers each may include at least two short-pitched coils while the second, fourth and sixth hairpin layers each may include at least two long-pitched coils.
Abstract:
A method and assembly for forming a rotor include forming a rotor core having a plurality of voids and placing the formed rotor core into a die cavity. The method includes moving a plurality of support shoes to define an outer diameter of the die cavity, and injecting at least one of the plurality of voids with a magnetic slurry. At least one permanent magnet is formed from the magnetic slurry by applying pressure to the rotor core and the magnetic slurry within the die cavity and by applying a magnetic field to align the magnetic slurry. After forming the at least one permanent magnet within the rotor core, the plurality of support shoes are retracted and the rotor core removed with the at least one permanent magnet formed therein.
Abstract:
A rotor core for an internal permanent magnet machine includes at least one ferrite pole and at least one rare earth pole, arranged radially about an axis in alternating relationship. The ferrite poles define a plurality of first pole cavities, and the rare earth poles define a plurality of second pole cavities. One of a plurality of ferrite magnets is disposed within each of the first pole cavities of the ferrite poles, and one of a plurality of rare earth magnets is disposed within each of the second pole cavities of the rare earth poles.