Abstract:
A method and system for waking up a primary microcontroller of a controller in response to a change in a control pilot signal generated by an external device coupled to the controller includes coupling the external device to an input port electrically connected to the controller. A control pilot signal generated by the external device is received by the input port and outputted to a monitoring device of the controller in low power mode. The monitoring device in low power mode polls the control pilot signal and upon detecting a valid change transitions to normal power mode to output a wakeup pulse to the primary microcontroller, which in a sleep state receives the wakeup pulse and wakes up to execute instructions stored on the primary microcontroller. In an example, the system controls recharging of a battery by a charging station which outputs a pulse width modulated control pilot signal.
Abstract:
A battery management method includes the following steps: (a) reading, via a battery management processor, a non-volatile memory to determine if the non-volatile memory contains data indicative of a brownout in the auxiliary battery module; (b) receiving, via the battery management processor, at least one input signal from at least one brownout detector of at least one smart device having a device processor in order to determine a brownout condition in at least one smart device; (c) determining, via the battery management processor, that a triggering event has occurred if the non-volatile memory contains data indicative of the brownout in the auxiliary battery module or the at least one smart device exhibits a brownout condition; and (d) commanding, via the battery management processor, the main battery module to electrically charge the auxiliary battery module of the hybrid vehicle if the triggering event has occurred.