Abstract:
A cooling system for an engine having a plurality of piston cylinders. The cooling system can include a liquid coolant source having liquid coolant and a cylinder cooling passage network having an inlet and an outlet for receiving and transmitting the liquid coolant. The cylinder cooling passage network having a plurality of individual upstream fluidic passages each being fluidly coupled to the inlet to directly receive the liquid coolant from the liquid coolant source in parallel flow. The cylinder cooling passage network further having a plurality of cylinder jacket passages each extending about at least a portion of a corresponding one of the plurality of piston cylinders and being positioned immediately adjacent thereto. The cylinder jacket passages are fluidly coupled directly to a corresponding one of the plurality of individual upstream fluidic passages to receive the liquid coolant and transmit the liquid coolant to the outlet for improved cooling performance.
Abstract:
An integrated exhaust manifold for use with an internal combustion engine and dual scroll turbocharger. The integrated exhaust manifold includes a first exhaust passageway fluidly connected between a first pair of piston cylinders and the dual scroll turbocharger for transporting exhaust gas from the first pair of piston cylinders to a first input of dual scroll turbocharger. The integrated exhaust manifold includes a second exhaust passageway fluidly connected between a second pair of piston cylinders and the dual scroll turbocharger for transporting exhaust gas from the second pair of piston cylinders to a second input of the dual scroll turbocharger. The second exhaust passageway is fluidly independent from the first exhaust passageway and the first and second exhaust passageways are positioned to define a septum area therebetween. A cooling system having a septum cooling jacket is use to cool the septum area between the first and second exhaust passageways.
Abstract:
An engine thermal management system for a vehicle having an exhaust gas system and an engine with an integrated exhaust manifold and a method for controlling the same are provided. The engine thermal management system may include a coolant pump, an engine water jacket, and a controller. The engine water jacket expels coolant from an IEM coolant outlet, which is directly cast into the integrated exhaust manifold. The coolant flowing through the engine water jacket and expelled from the IEM coolant outlet is in heat exchange relation with a heated exhaust gas flowing through the exhaust gas system, via an engine cylinder head and an exhaust gas septum, to thereby extract heat therefrom, resulting in a heated coolant, which is expelled from the IEM coolant outlet and selectively routed, by the controller, to one of a heater core, an engine oil heat exchanger, a transmission heat exchanger, and a radiator.
Abstract:
An integrated exhaust manifold for use with an internal combustion engine and dual scroll turbocharger. The integrated exhaust manifold includes a first exhaust passageway fluidly connected between a first pair of piston cylinders and the dual scroll turbocharger for transporting exhaust gas from the first pair of piston cylinders to a first input of dual scroll turbocharger. The integrated exhaust manifold includes a second exhaust passageway fluidly connected between a second pair of piston cylinders and the dual scroll turbocharger for transporting exhaust gas from the second pair of piston cylinders to a second input of the dual scroll turbocharger. The second exhaust passageway is fluidly independent from the first exhaust passageway and the first and second exhaust passageways are positioned to define a septum area therebetween. A cooling system having a septum cooling jacket is use to cool the septum area between the first and second exhaust passageways.