Abstract:
A cylinder head valve seat of an automobile vehicle includes a valve seat having a valve seat surface integrally joined to an engagement end. The engagement end includes multiple materials extending through a cross section of the engagement end. The multiple materials include: a first material having a first thermal conductivity; and a second material having a second thermal conductivity higher than the thermal conductivity of the first material, wherein the first material transitions into the second material.
Abstract:
A system for casting an aluminum alloy includes a first chamber for containing a first melt at a first temperature, a second chamber for containing second melt at a second temperature that is lower than the first temperature, a mixing chamber in communication with the first chamber and the second chamber for simultaneously receiving and mixing the first melt from the first chamber with the second melt from the second chamber, and a mold chamber in communication with the mixing chamber and for receiving the mixed melt.
Abstract:
A casting tool for a direct squeeze casting process that includes a cast mold tool with a contoured internal passage for better die thermal management. This enables the use of a grey cast iron mold material. A durable mold surface may also be formed through a nodular cast iron reaction with a Magnesium addition in either sand core or sand core coating.
Abstract:
A casting system includes a first mold, a second mold, the first mold and the second mold being configured to receive molten metal, the first mold and the second mold exerting pressure on the molten metal to form a mechanical component as the molten metal cools, and a sensor that measures the pressure exerted on the molten metal to provide feedback information to regulate the pressure exerted on the molten metal.
Abstract:
An aluminum alloy is disclosed that is suitable for casting and additive manufacturing processes. The aluminum alloy may be used in the casting and additive manufacturing of engine blocks and/or cylinder heads of modern internal combustion engines. The aluminum alloy exhibits improved ductility and fatigue properties suitable for elevated operating temperatures from about 250° C. to 350° C. The alloy includes about, by weight, 4-10% Copper (Cu), 0.1-1.0% Manganese (Mn), 0.2 to 5% Magnesium (Mg), 0.01-1.0% Cerium (Ce), 0.01-2% Nickel (Ni), 0.01-0.8% Chromium (Cr), 0.01-1.0% Zirconium (Zr); 0.01-1.0% Vanadium (V), 0.01-0.3% Cobalt (Co), 0.01-1.0% Titanium (Ti), 1-200 ppm Boron (B), 1-200 ppm Strontium (Sr), 0.5% max Iron (Fe), 0.1% max other trace elements, and balance of aluminum (Al).
Abstract:
Aluminum alloy components having improved properties. In one form, the cast alloy component may include about 0.6 to about 14.5 wt % silicon, 0 to about 0.7 wt % iron, about 1.8 to about 4.3 wt % copper, 0 to about 1.22 wt % manganese, about 0.2 to about 0.5 wt % magnesium, 0 to about 1.2 wt % zinc, 0 to about 3.25 wt % nickel, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % tin, about 0.0001 to about 0.4 wt % titanium, about 0.002 to about 0.07 wt % boron, about 0.001 to about 0.07 wt % zirconium, about 0.001 to about 0.14 wt % vanadium, 0 to about 0.67 wt % lanthanum, and the balance predominantly aluminum plus any remainders. Further, the weight ratio of Mn/Fe is between about 0.5 and about 3.5. Methods of making cast aluminum parts are also described.
Abstract:
A method of computationally determining material property changes for a cast aluminum alloy component. Accuracy of the determination is achieved by taking into consideration material property changes over the projected service life of the component. In one form, the method includes accepting time-dependent temperature data and using that data in conjunction with one or more constitutive relationships to quantify the impact of various temperature regimes or conditions on the properties of heat-treatable components and alloys. Finite element nodal analyses may be used as part of the method to map the calculated material properties on a nodal basis, while a viscoplastic model may be used to determine precipitation hardening and softening effects as a way to simulate the time and temperature dependencies of the material. The combined approach may be used to determine the material properties over the expected service life of a cast component made from such material.
Abstract:
A cylinder head valve seat of an automobile vehicle includes a valve seat having a valve seat surface integrally joined to an engagement end. The engagement end includes multiple materials extending through a cross section of the engagement end. The multiple materials include: a first material having a first thermal conductivity; and a second material having a second thermal conductivity higher than the thermal conductivity of the first material, wherein the first material transitions into the second material.
Abstract:
An Aluminum-Silicon casting alloy for use in high temperature service conditions. The alloy composition includes, by weight percentage, from about 5.00% to about 17.00% Silicon (Si), from about 0.00% to about 0.90% Iron (Fe), from about 0.00% to about 1.00% Manganese (Mn); from about 0.000% to about 0.018% Strontium (Sr), from about 0.00% to about 2.00% Copper (Cu), from about 0.00% to about 0.50% Magnesium (Mg), from about 0.00% to about 0.05% Zinc (Zn), from about 0.01% to about 0.10% Boron (B); and a balance of Aluminum (Al).
Abstract:
Aluminum alloy components having improved properties. In one form, the cast alloy component may include about 0.6 to about 14.5 wt % silicon, 0 to about 0.7 wt % iron, about 1.8 about 4.3 wt % copper, 0 to about 1.22 wt % manganese, about 0.2 to about 0.5 wt % magnesium, 0 to about 1.2 wt % zinc, 0 to about 3.25 wt % nickel, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % tin, about 0.0001 to about 0.4 wt % titanium, about 0.002 to about 0.07 wt % boron, about 0.001 to about 0.07 wt % zirconium, about 0.001 to about 0.14 wt % vanadium, 0 to about 0.67 wt % lanthanum, and the balance predominantly aluminum plus any remainders. Further, the weight ratio of Mn/Fe is between about 0.5 and about 3.5. Methods of making cast aluminum parts are also described.